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Abstract

Recently some specific classes of non-smooth and non-Lipschitz

convex optimization problems were selected by Yu. Nesterov along

with H. Lu. We consider convex programming problems with sim-

ilar smoothness conditions for the objective function and functional

constraints. We introduce a new concept of an inexact model and pro-

pose some analogues of switching subgradient schemes for convex pro-

gramming problems for the relatively Lipschitz-continuous objective

function and functional constraints. Some class of online convex opti-

mization problems is considered. The proposed methods are optimal in

the class of optimization problems with relatively Lipschitz-continuous

objective and functional constraints.

Keywords: Convex Programming Problem, Switching Subgradi-

ent Scheme, Relative Lipschitz-Continuity, Inexact Model, Stochastic

Mirror Descent, Online Optimization Problem.
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Introduction

Different relaxations of the classical smoothness conditions for functions are

interesting for a large number of modern applied optimization problems. In

particular, in [2] there were proposed conditions of the relative smoothness of

the objective function, which mean the replacement of the classic Lipschitz

condition by the following weak version

f(y) ≤ f(x) + 〈∇f(x), y − x〉 + LVd(y, x), (0.1)

for any x and y from the domain of the objective function f and some L > 0,

Vd(y, x) is an analogue of the distance between the points x and y (often called

the Bregman divergence). Such a distance is widely used in various fields

of science, particularly in optimization. Usually, the Bregman divergence

is defined on the base of the auxiliary 1-strongly convex and continuously-

differentiable function d : Q ⊂ R
n → R (distance generating function) as

follows

Vd(y, x) = d(y)− d(x)− 〈∇d(x), y − x〉 ∀x, y ∈ Q, (0.2)

where Q is a convex closed set, 〈·, ·〉 is a scalar product in R
n. In particular,

for the standard Euclidean norm ‖ · ‖2 and the Euclidean distance in R
n, we

can assume that Vd(y, x) = d(y−x) = 1
2
‖y−x‖22 for arbitrary x, y ∈ Q. How-

ever, in many applications, it often becomes necessary to use non-Euclidean

norms. Moreover, the considered condition of relative smoothness in [2, 18]

implies only the convexity (but not strong convexity) of the distance gener-

ating function d. As shown in [18], the concept of relative smoothness makes

it possible to apply a variant of the gradient method to some problems which

were previously solved only by using interior-point methods. In particular,

we talk about the well-known problem of the construction of an optimal el-

lipsoid which covers a given set of points. This problem is important in the

field of statistics and data analysis.

A similar approach to the Lipschitz property and non-smooth problems

was proposed in [19] (see also [27]). This approach is based on an analogue of

the Lipschitz condition for the objective function f : Q → R with Lipschitz

constant Mf > 0, which involves replacing the boundedness of the norm of

the subgradient, i.e. ‖∇f(x)‖∗ ≤ Mf , with the so-called relative Lipschitz

condition

‖∇f(x)‖∗ 6
Mf

√
2Vd(y, x)

‖y − x‖
∀x, y ∈ Q, y 6= x,
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where ‖ · ‖∗ denotes the conjugate norm, see Section 1. below. Moreover, the

distance generating function d is not necessarily strongly convex. In [19] there

were proposed deterministic and stochastic Mirror Descent algorithms for

optimization problems with convex relatively Lipschitz-continuous objective

functionals. Note that the applications of the relative Lipschitz-continuity

to the well-known classical support vector machine (SVM) problem and to

the problem of minimizing the maximum of convex quadratic functions (in-

tersection of n ellipsoids problem) were discussed in [19].

In this paper we propose a new concept of an inexact model for objec-

tive functional and functional constraint. More precisely, we introduce some

analogues of the concepts of an inexact oracle [9] and an inexact model [32]

for objective functionals. However, unlike [9, 32], we do not generalize the

smoothness condition. We relax the Lipschitz condition and consider a re-

cently proposed generalization of relative Lipschitz-continuity [19, 27]. We

propose some optimal Mirror Descent methods, in different settings of Rela-

tively Lipschitz-continuous convex optimization problems.

The Mirror Descent method originated in the works of A. Nemirovski and

D. Yudin more than 30 years ago [24,25] and was later analyzed in [5]. It can

be considered as the non-Euclidean extension of subgradient methods. The

method was used in many applications [22, 23, 31]. Standard subgradient

methods employ the Euclidean distance function with a suitable step-size

in the projection step. The Mirror Descent extends the standard projected

subgradient methods by employing a nonlinear distance function with an

optimal step-size in the nonlinear projection step [21]. The Mirror Descent

method not only generalizes the standard subgradient descent method, but

also achieves a better convergence rate and it is applicable to optimization

problems in Banach spaces, while the subgradient descent is not [10]. Also,

in some works [4,25] there was proposed an extension of the Mirror Descent

method for constrained problems.

Also, in recent years, online convex optimization (OCO) has become a

leading online learning framework, due to its powerful modeling capability

for a lot of problems from diverse domains. OCO plays a key role in solving

problems where statistical information is being updated [15, 16]. There are

a lot of examples of such problems: Internet network, consumer data sets

or financial market, machine learning applications, such as adaptive rout-

ing in networks, dictionary learning, classification and regression (see [33]

and references therein). In recent years, methods for solving online opti-
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mization problems have been actively developed, in both deterministic and

stochastic settings [7, 14, 17, 28]. Among them one can mention the Mirror

Descent method for the deterministic setting of the problem [29, 30] and for

the stochastic case [1,12,34], which allows to solve problems for an arbitrary

distance function.

This paper is devoted to Mirror Descent methods for convex program-

ming problems with a relatively Lipschitz-continuous objective function and

functional constraints. It consists of an introduction and 6 main sections.

In Section 1. we consider the problem statement and define the concept

of an inexact (δ, φ, V )–model for the objective function. Also we propose

some modifications of the Mirror Descent method for the concept of Model

Generality. Section 2. is devoted to some special cases of problems with the

properties of relative Lipschitz continuity, here we propose two versions of the

Mirror Descent method in order to solve the problems under consideration.

In Sections 3. and 4. we consider the stochastic and online (OCO) setting of

the optimization problem respectively. In Section 5. one can find numerical

experiments which demonstrate the efficiency of the proposed methods.

The contribution of the paper can be summarized as follows:

• Continuing the development of Yurii Nesterov’s ideas in the direction of

the relative smoothness and non-smoothness [27] there was introduced

the concept of an inexact (δ, φ, V )–model of the objective function. For

the proposed model we proposed some variants of the well-known Mir-

ror Descent method, which provides an (ε+δ)–solution of the optimiza-

tion problem, where ε is the controlled accuracy. There was considered

the applicability of the proposed method to the case of the stochastic

setting of the considered optimization problem.

• We also considered a special case of the relative Lipschitz condition for

objective function. The proposed Mirror Descent algorithm was speci-

fied for the case of such functions. Furthermore, there was introduced

one more modification of the algorithm with another approach to the

step selection. There was also considered the possibility of applying

the proposed methods to the case of several functional constraints.

• We considered an online optimization problem and proposed the mod-

ification of the Mirror Descent algorithm for such a case. Moreover,

there were conducted some numerical experiments which demonstrate

the effectiveness of the proposed methods.
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1. Inexact Model for Relative Non-Smooth Func-

tionals and Mirror Descent Algorithm

Let (E, ‖ · ‖) be a normed finite-dimensional vector space and E∗ be the

conjugate space of E with the norm:

‖y‖∗ = max
x
{〈y, x〉, ‖x‖ ≤ 1},

where 〈y, x〉 is the value of the continuous linear functional y at x ∈ E.

LetQ ⊂ E be a (simple) closed convex set. Consider two subdifferentiable

functions f, g : Q→ R. In this paper we consider the following optimization

problem

f(x)→ min
x∈Q,g(x)≤0

. (1.3)

Let d : Q → R be any convex (not necessarily strongly-convex) differ-

entiable function, we will call it the reference function. Suppose we have a

constant Θ0 > 0, such that d(x∗) ≤ Θ2
0, where x∗ is a solution of (1.3). Note

that if there is a set, X∗ ⊂ Q, of optimal points for the problem (1.3), we

may assume that

min
x∗∈X∗

d(x∗) ≤ Θ2
0.

Let us introduce some generalization of the concept of Relative Lipschitz

continuity [27]. Consider one more auxiliary function φ : R → R, which is

strictly increasing and φ(0) = 0. Clearly, due to the strict monotonicity of

φ(·), there exists the inverse function φ−1(·).

Definition 1.1. Let δ > 0. We say that f and g admit the (δ, φ, V )–model

at the point y ∈ Q if

f(x) + ψf (y, x) ≤ f(y), −ψf (y, x) ≤ φ−1
f (Vd(y, x)) + δ (1.4)

g(x) + ψg(y, x) ≤ g(y), −ψg(y, x) ≤ φ−1
g (Vd(y, x)) + δ, (1.5)

where ψf(y, x) and ψg(y, x) are convex functions on y and ψf (x, x) = ψg(x, x) =

0 for all x ∈ Q.

Let h > 0. For problems with a (δ, φ, V )–model, the proximal mapping

operator (Mirror Descent step) is defined as follows

Mirrh(x, ψ) = argmin
y∈Q

{
ψ(y, x) +

1

h
Vd(y, x)

}
.

The following lemma describes the main property of this operator.
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Lemma 1.1 (Main Lemma). Let f be a convex function, which satisfies

(1.4), h > 0 and x+ = hMirrh(x, ψf ). Then for any y ∈ Q

h(f(x)− f(y)) ≤ −hψf (y, x) ≤ φ∗
f(h) + Vd(y, x)− Vd(y, x

+) + hδ,

where φ∗
f is the conjugate function of φf .

Proof. From the definition of x+

x+ = hMirrh(x, ψf ) = argmin
y∈Q
{hψf (y, x) + Vd(y, x)} ,

for any y ∈ Q, we have

hψf(y, x)− hψf (x
+, x) + 〈∇d(x+)−∇d(x), y − x+〉 ≥ 0.

Further, h(f(x)− f(y)) ≤ −hψf (y, x) ≤

≤ −hψf (x
+, x) + 〈∇d(x+)−∇d(x), y − x+〉

= −hψf (x
+, x) + Vd(y, x)− Vd(y, x

+)− Vd(x
+, x) + hδ

≤ hφ−1
f (Vd(x

+, x)) + Vd(y, x)− Vd(y, x
+)− Vd(x

+, x) + hδ

≤ φ∗
f(h) + φf(φ

−1
f (Vd(x

+, x))) + Vd(y, x)− Vd(y, x
+)− Vd(x

+, x) + hδ

= φ∗
f(h) + Vd(x

+, x) + Vd(y, x)− Vd(y, x
+)− Vd(x

+, x) + hδ

= φ∗
f(h) + Vd(y, x)− Vd(y, x

+) + hδ.

For problem (1.3) with an inexact (δ, φ, V )–model, we consider a Mirror

Descent algorithm, listed as Algorithm 1 below. For this proposed algorithm,

we will call step k productive if g(xk) ≤ ε, and non-productive if the reverse

inequality g(xk) > ε holds. Let I and |I| denote the set of indexes of pro-

ductive steps and their number, respectively. Similarly, we use the notation

J and |J | for non-productive steps.

Let x∗ denote the exact solution of the problem (1.3). The next theorem

provides the complexity and quality of the proposed Algorithm 1.

Theorem 1.1 (Modified MDA for Model Generality). Let f and g be convex

functionals, which satisfy (1.4), (1.5) respectively and ε > 0, δ > 0 be fixed

positive numbers. Assume that Θ0 > 0 is a known constant such that d(x∗) ≤

Θ2
0. Then, after the stopping of Algorithm 1, the following inequalities hold:

f(x̂)− f(x∗) ≤ ε+ δ and g(x̂) ≤ ε+ δ.
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Algorithm 1 Modified MDA for (δ, φ, V )–model.

Require: ε > 0, δ > 0, hf > 0, hg > 0,Θ0 : d(x
∗) ≤ Θ2

0.

1: x0 = argminx∈Q d(x).

2: I =: ∅ and J =: ∅

3: N ← 0

4: repeat

5: if g
(
xN
)
≤ ε+ δ then

6: xN+1 =Mirrhf

(
xN , ψf

)
, "productive step"

7: N → I

8: else

9: xN+1 =Mirrhg

(
xN , ψg

)
, "non-productive step"

10: N → J

11: end if

12: N ← N + 1

13: until Θ2
0 ≤ ε

(
|J |hg + |I|hf

)
− |J |φ∗

g(h
g)− |I|φ∗

f(h
f).

Ensure: x̂ := 1
|I|
∑
k∈I

xk.

Proof. By Lemma 1.1, we have for all k ∈ I and y ∈ Q

hf
(
f(xk)− f(y)

)
≤ φ∗

f(h
f) + Vd(y, x

k)− Vd(y, x
k+1) + hfδ, (1.6)

Similarly, for all k ∈ J and y ∈ Q

hg
(
g(xk)− g(y)

)
≤ φ∗

g(h
g) + Vd(y, x

k)− Vd(y, x
k+1) + hgδ, (1.7)

Taking summation, in each side of (1.6) and (1.7), over productive and non-

productive steps, we get
∑

k∈I
hf
(
f(xk)− f(x∗)

)
+
∑

k∈J
hg
(
g(xk)− g(x∗)

)
≤

≤
∑

k∈I
φ∗
f(h

f )+
∑

k∈J
φ∗
g(h

g)+
∑

k

(
Vd(x

∗, xk)− Vd(x
∗, xk+1)

)
+
∑

k∈I
hfδ+

∑

k∈J
hgδ ≤

∑

k∈I
φ∗
f(h

f) +
∑

k∈J
φ∗
g(h

g) + Θ2
0 +

∑

k∈I
hfδ +

∑

k∈J
hgδ.

Since for any k ∈ J, g(xk)− g(x∗) > ε+ δ, we have

∑

k∈I
hf (f(x̂)− f(x∗)) ≤

∑

k∈I
φ∗
f(h

f) +
∑

k∈J
φ∗
g(h

g) + Θ2
0 − ε

∑

k∈J
hg +

∑

k∈I
hfδ =

7



= |I|
(
φ∗
f(h

f) + δhf
)
+ |J |φ∗

g(h
g)− |J |hgε+Θ2

0 ≤ ε|I|hf + δ|I|hf .

So, for x̂ := 1
|I|
∑
k∈I

xk, after the stopping criterion of Algorithm 1 is satis-

fied, the following inequalities hold

f(x̂)− f(x∗) ≤ ε+ δ and g(x̂) ≤ ε+ δ.

2. The Case of Relatively Lipschitz-Continuous

Functionals

Suppose hereinafter that the objective function f and the constraint g satisfy

the so-called relative Lipschitz condition, with constantsMf > 0 andMg > 0,

i.e. the functions φ−1
f and φ−1

g from (1.4) and (1.5) are modified as follows:

φ−1
f (Vd(y, x)) =Mf

√
2Vd(y, x), (2.8)

φ−1
g (Vd(y, x)) =Mg

√
2Vd(y, x) (2.9)

Note that the functions f, g must still satisfy the left inequalities in (1.4),(1.5):

f(x) + ψf (y, x) ≤ f(y), −ψf (y, x) ≤Mf

√
2Vd(y, x) + δ (2.10)

g(x) + ψg(y, x) ≤ g(y), −ψg(y, x) ≤ Mg

√
2Vd(y, x) + δ, (2.11)

For this particular case we say that f and g admit the (δ,Mf , V )– and

(δ,Mg, V )–model at each point x ∈ Q respectively. The following Remark 2

provides the explicit form of φf , φg and their conjugate functions φ∗
f , φ

∗
g.

Remark 2.1. Let Mf > 0 and Mg > 0. Then functions φf and φg which

correspond to (2.8) and (2.9) are defined as follows:

φf(t) =
t2

2M2
f

, φg(t) =
t2

2M2
g

.

Their conjugate functions have the following form:

φ∗
f(y) =

y2M2
f

2
, (2.12)

φ∗
g(y) =

y2M2
g

2
. (2.13)
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For the case of relatively Lipschitz-continuous objective function and con-

straint, we consider a modification of Algorithm 1, the modified algorithm is

listed as Algorithm 2, below. The difference between Algorithms 1 and 2 is

represented in the control of productivity and the stopping criterion.

Algorithm 2 Mirror Descent for Relatively Lipschitz-continuous functions,

version 1.

Require: ε > 0, δ > 0,Mf > 0,Mg > 0,Θ0 : d(x
∗) ≤ Θ2

0

1: x0 = argminx∈Q d(x).

2: I =: ∅

3: N ← 0

4: repeat

5: if g
(
xN
)
≤Mgε+ δ then

6: hf = ε
Mf
,

7: xN+1 =Mirrhf

(
xN , ψf

)
, "productive step"

8: N → I

9: else

10: hg = ε
Mg
,

11: xN+1 =Mirrhg

(
xN , ψg

)
, "non-productive step"

12: end if

13: N ← N + 1

14: until N ≥
2Θ2

0

ε2
.

Ensure: x̂ := 1
|I|
∑
k∈I

xk.

For the proposed Algorithm 2, we have the following theorem, which

provides an estimate of its complexity and the quality of the solution of the

problem.

Theorem 2.1. Let f and g be convex functions, which satisfy (2.10) and

(2.11) for Mf > 0 and Mg > 0.

Let ε > 0, δ > 0 be fixed positive numbers. Assume that Θ0 > 0 is a

known constant such that d(x∗) ≤ Θ2
0. Then, after the stopping of Algorithm

2, the following inequalities hold:

f(x̂)− f(x∗) ≤ Mfε+ δ and g(x̂) ≤Mgε+ δ.

9



Proof. By Lemma 1.1, we have
∑

k∈I
hf
(
f(xk)− f(x∗)

)
+
∑

k∈J
hg
(
g(xk)− g(x∗)

)
≤
∑

k∈I
φ∗
f(h

f) +
∑

k∈J
φ∗
g(h

g)+

+ Θ2
0 +

∑

k∈I
hfδ +

∑

k∈J
hgδ

Since for any k ∈ J, g(xk)− g(x∗) > Mgε+ δ we have

∑

k∈I
hf (f(x̂)− f(x∗)) ≤

∑

k∈I
φ∗
f (h

f) +
∑

k∈J
φ∗
g(h

g) + Θ2
0 −Mgε

∑

k∈J
hg +

∑

k∈I
hfδ

= |I|(φ∗
f(h

f) + δhf ) + |J |φ∗
g(h

g)− |J |ε2 +Θ2
0.

Taking into account the explicit form of the conjugate functions (2.12),

(2.13) one can get:

hf (f(x̂)− f(x∗)) ≤ |I|

(
M2

fh
f 2

2
+ δhf

)
+ |J |

M2
gh

g2

2
− |J |ε2 +Θ2

0

= |I|

(
ε2

2
+ δhf

)
+ |J |

ε2

2
− |J |ε2 +Θ2

0

≤ Mfε|I|h
f + δ|I|hf ,

supposing that the stopping criterion is satisfied.

So, for the output value of the form x̂ = 1
|I|
∑
k∈I

xk, the following inequali-

ties hold:

f(x̂)− f(x∗) ≤Mfε+ δ and g(x̂) ≤Mgε+ δ.

Also, for the case of relatively Lipschitz-continuous objective function and

constraint, we consider another modification of Algorithm 1, which is listed

as the following Algorithm 3. Note that the difference lies in the choice of

steps hf , hg and the stopping criterion.

By analogy with the proof of Theorem 2 one can obtain the following

result concerning the quality of the convergence of the proposed Algorithm

3.

Theorem 2.2. Let f and g be convex functions, which satisfy (2.10) and

(2.11) for Mf > 0 and Mg > 0. Let ε > 0, δ > 0 be fixed positive numbers.

Assume that Θ0 > 0 is a known constant such that d(x∗) ≤ Θ2
0.

10



Algorithm 3 Mirror Descent for Relatively Lipschitz-continuous functions,

version 2.
Require: ε > 0, δ > 0,Mf > 0,Mg > 0, Θ0 : d(x

∗) ≤ Θ2
0.

1: x0 = argminx∈Q d(x).

2: I =: ∅ and J =: ∅

3: N ← 0

4: repeat

5: if g
(
xN
)
≤ ε+ δ then

6: hf = ε
M2

f

,

7: xk+1 =Mirrhf

(
xN , ψf

)
, "productive step"

8: N → I

9: else

10: hg = ε
M2

g
,

11: xN+1 =Mirrhg

(
xN , ψg

)
, "non-productive step"

12: N → J

13: end if

14: N ← N + 1

15: until
2Θ2

0

ε2
≤ |I|

M2
f

+ |J |
M2

g
.

Ensure: x̂ := 1
|I|
∑
k∈I

xk.

Then, after the stopping of Algorithm 3, the following inequalities hold:

f(x̂)− f(x∗) ≤ ε+ δ and g(x̂) ≤ ε+ δ.

Moreover, the required number of iterations of Algorithm 3 does not exceed

N =
2M2Θ2

0

ε2
, where M = max{Mf ,Mg}.

Remark 2.2. Clearly, Algorithms 2 and 3 are optimal in terms of the lower

bounds [25]. More precisely, let us understand hereinafter the optimality of

the Mirror Descent methods as the complexity O( 1
ε2
) (it is well-kown that

this estimate is optimal for Lipschitz-continuous functionals [25]).

Remark 2.3 (The case of several functional constraints). Let us consider a

set of convex functions f and gp : Q→ R, p ∈ [m]
def
= {1, 2, . . . , m}. We will

focus on the following constrained optimization problem

min {f(x) : x ∈ Q and gp(x) ≤ 0 for all p ∈ [m]} . (2.14)

11



It is clear that instead of a set of functionals {gp(·)}
m
p=1 we can consider

one functional constraint g : Q → R, such that g(x) = maxp∈[m]{gp(x)}.

Therefore, by this setting, problem (2.14) will be equivalent to problem (1.3).

Assume that for any p ∈ [m], the functional gp satisfies the following

condition

−ψgp(y, x) ≤ Mgp

√
2Vd(y, x) + δ

For problem (2.14), we propose a modification of Algorithms 2 and 3 (the

modified algorithms are listed as Algorithm 6 and 7 in Appendix A). The idea

of the proposed modification allows saving the running time of algorithms

due to consideration of not all functional constraints on non-productive steps.

Remark 2.4 (Composite Optimization Problems [6,20,26]). Proposed meth-

ods are applicable to the composite optimization problems, specifically

min{f(x) + r(x) : x ∈ Q, g(x) + η(x) ≤ 0},

where r, η : Q → R are so-called simple convex functionals (i. e. the

proximal mapping operator Mirrh(x, ψ) is easily computable). For this case,

for any x, y ∈ Q, we have

ψf (y, x) = 〈∇f(x), y − x〉+ r(y)− r(x)

ψg(y, x) = 〈∇g(x), y − x〉 + η(y)− η(x).

3. Stochastic Mirror Descent Algorithm

Let us, in this section, consider the stochastic setting of the problem (1.3).

This means that we can still use the value of the objective function and func-

tional constraints, but instead of their (sub)gradient, we use their stochastic

(sub)gradient. Namely, we consider the first-order unbiased oracle that pro-

duces ∇f(x, ξ) and ∇g(x, ζ), where ξ and ζ are random vectors and

E[∇f(x, ξ)] = ∇f(x), ∇E[g(x, ζ)] = ∇g(x).

Assume that for each x, y ∈ Q

〈∇f(x, ξ), x− y〉 ≤ Mf

√
2Vd(y, x) and 〈∇g(x, ζ), x− y〉 6Mg

√
2Vd(y, x),

(3.15)
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where Mf ,Mg > 0, Let us consider the proximal mapping operator for f

Mirrh(x, ξ) = argmin
y∈Q

{
1

h
Vd(y, x) + 〈∇f(x, ξ), y〉

}
,

and similarly, we consider the proximal mapping operator for g. The follow-

ing lemma describes the main property of this operator.

Lemma 3.1. Let f be a convex function which satisfies (1.4), h > 0, δ > 0,

ξ be a random vector and x̃ =Mirrh(x, ξ). Then for all y ∈ Q

h(f(x)−f(y)) ≤ φ∗
f(h)+Vd(y, x)−Vd(y, x̃)+h〈∇f(x, ξ)−∇f(x), y−x〉+hδ,

where, as earlier, φ∗
f(h) =

h2M2
f

2
.

Suppose ε > 0 is a given positive real number. We say that a (random)

point x̂ ∈ Q is an expected ε–solution to the problem (1.3), in the stochastic

setting, if

E[f(x̂)]− f(x∗) ≤ ε and g(x̂) ≤ ε. (3.16)

In order to solve the stochastic setting of the considered problem (1.3),

we propose the following algorithm.

The following theorem gives information about the efficiency of the algo-

rithm. The proof of this theorem is given in Appendix B.

Theorem 3.1. Let f and g be convex functions, which satisfy (1.4) and

(1.5). Let ε > 0, δ > 0 be fixed positive numbers. Then, after the stopping of

Algorithm 4, the following inequalities hold:

E[f(x̂)]− f(x∗) ≤ ε+ δ and g(x̂) ≤ ε+ δ.

Remark 3.1. It should be noted how the optimality of the proposed method

can be understood. With the special assumptions (2.10) – (2.11) and choice

of hf , hg, the complexity of the algorithm is O( 1
ε2
), which is optimal in such

class of problems.

4. Online Optimization Problem

In this section we consider the online setting of the optimization problem

(1.3). Namely

1

N

N∑

i=1

fi(x)→ min
x∈Q,g(x)≤0

, (4.17)
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Algorithm 4 Modified Mirror Descent for the stochastic setting.

Require: ε > 0, δ > 0, hf > 0, hg > 0,Θ0 : d(x
∗) ≤ Θ2

0.

1: x0 = argminx∈Q d(x).

2: I =: ∅ and J =: ∅

3: N ← 0

4: repeat

5: if g
(
xN
)
≤ ε+ δ then

6: xN+1 =Mirrhf

(
xN , ξN , ψf

)
, "productive step"

7: N → I

8: else

9: xN+1 =Mirrhg

(
xN , ζN , ψg

)
, "non-productive step"

10: N → J

11: end if

12: N ← N + 1

13: until Θ2
0 ≤ ε

(
|J |hg + |I|hf

)
− |J |φ∗

g(h
g)− |I|φ∗

f(h
f).

Ensure: x̂ := 1
|I|
∑
k∈I

xk.

under the assumption that all fi : Q→ R (i = 1, . . . , N) and g satisfy (2.10)

and (2.11) with constants Mi > 0, i = 1, . . . , N and Mg > 0.

In order to solve problem (4.17), we propose an algorithm (listed as Al-

gorithm 5 below). This algorithm produces N productive steps and in each

step, the (sub)gradient of exactly one functional of the objectives is calcu-

lated. As a result of this algorithm, we get a sequence {xk}k∈I (on productive

steps), which can be considered as a solution to problem (4.17) with accuracy

κ (see (4.18)).

Assume that M = max{Mi,Mg}, h
f = hg = h = ε

M
.

For Algorithm 5, we have the following result.

Theorem 4.1. Suppose all fi : Q → R (i = 1, . . . , N) and g satisfy (2.10)

and (2.11) with constants Mi > 0, i = 1, . . . , N and Mg > 0, Algorithm 5

works exactly N productive steps. Then after the stopping of this Algorithm,

the following inequality holds

1

N

N∑

i=1

fi(x
k)−min

x∈Q

1

N

N∑

i=1

fi(x) ≤ κ,

moreover, when the regret is non-negative, there will be no more than O(N)

non-productive steps.
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Algorithm 5 Modified Mirror Descent for the online setting.

Require: ε > 0, δ > 0,M > 0, N,Θ0 : d(x
∗) ≤ Θ2

0.

1: x0 = argminx∈Q d(x).

2: i := 1, k := 0

3: set h = ε
M2

4: repeat

5: if g
(
xk
)
≤ ε+ δ then

6: xk+1 =Mirrh
(
xk, ψfi

)
, "productive step"

7: i = i+ 1,

8: k = k + 1,

9: else

10: xk+1 =Mirrh
(
xk, ψg

)
, "non-productive step"

11: k = k + 1,

12: end if

13: until i = N + 1.

14: Guaranteed accuracy:

κ =
|J |

N

(
−
ε

2

)
+
(ε
2
+ δ
)
+
M2Θ2

0

Nε
. (4.18)

The proof of this theorem is given in Appendix C. In particular, note that

the proposed method is optimal [15]: if for some C > 0, κ ∼ ε ∼ δ = C√
N

,

then |J | ∼ O(N).

5. Numerical Experiments

To show the practical performance of the proposed Algorithms 2, 3 and

their modified versions, Algorithm 6 and 7, in the case of many functional

constraints, a series of numerical experiments were performed1, for the well-

known Fermat-Torricelli-Steiner problem, but with some non-smooth func-

tional constraints.

For a given set {Pk = (p1k, p2k, . . . , pnk); k ∈ [r]} of r points, in n-dimensional

Euclidean space R
n, we need to solve the considered optimization problem

1All experiments were implemented in Python 3.4, on a computer fitted with Intel(R)

Core(TM) i7-8550U CPU @ 1.80GHz, 1992 Mhz, 4 Core(s), 8 Logical Processor(s). RAM

of the computer is 8 GB.
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(1.3), where the objective function f is given by

f(x) :=
1

r

r∑

k=1

√
(x1 − p1k)2 + . . .+ (xn − pnk)2 =

1

r

r∑

k=1

‖x− Pk‖2 . (5.19)

The functional constraint has the following form

g(x) = max
i∈[m]
{gi(x) = αi1x1 + αi2x2 + . . .+ αinxn}. (5.20)

The coefficients αi1, αi2, . . . , αin, for all i ∈ [m], in (5.20) and the coordinates

of the points Pk, for all k ∈ [r], are drawn from the normal (Gaussian)

distribution with the location of the mode equaling 1 and the scale parameter

equaling 2.

We choose the standard Euclidean norm and the Euclidean distance func-

tion in R
n, δ = 0, starting point x0 =

(
1√
n
, . . . , 1√

n

)
∈ R

n and Q is the unit

ball in R
n.

We run Algorithms 2, 3, 6 and 7, for m = 200, n = 500, r = 100 and

different values of ε ∈ { 1
2i

: i = 1, 2, 3, 4, 5}. The results of the work of these

algorithms are represented in Table 1 below. These results demonstrate the

comparison of the number of iterations (Iter.), the running time (in seconds)

of each algorithm and the qualities of the solution, produced by these algo-

rithms with respect to the objective function f and the functional constraint

g, where we calculate the values of these functions at the output xout := x̂ of

the algorithms. We set fbest := f (xout) and gout := g (xout).

In general, from the conducted experiments, we can see that Algorithm 2

and its modified version (Algorithm 6) work faster than Algorithms 3 and its

modified version (Algorithm 7). But note that Algorithms 3 and 7 guarantee

a better quality of the resulting solution to the considered problem, with

respect to the objective function f and the functional constraint (5.20). Also,

we can see the efficiency of the modified Algorithm 7, which saves the running

time of the algorithm, due to consideration of not all functional constraints

on non-productive steps.

Conclusion

In the paper, there was introduced the concept of an inexact (δ, φ, V )–model

of the objective function. There were considered some modifications of the
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Table 1: The results of Algorithms 2, 3, 6 and 7, with m = 200, n = 500, r =

100 and different values of ε.
Algorithm 2 Algorithm 6

1/ε Iter. Time

(sec.)

fbest gout Iter. Time

(sec.)

fbest gout

2 16 5.138 22.327427 2.210041 16 4.883 22.327427 2.210041

4 64 20.911 22.303430 2.016617 64 20.380 22.303430 2.016617

8 256 84.343 22.283362 1.858965 256 79.907 22.283362 2.015076

16 1024 317.991 22.274366 1.199792 1024 317.033 22.273177 1.988190

32 4096 1253.717 22.272859 0.607871 4096 1145.033 22.269038 1.858965

Algorithm 3 Algorithm 7

2 167 9.455 22.325994 0.417002 164 7.373 22.325604 0.391461

4 710 39.797 22.305980 0.204158 667 29.954 22.305654 0.188497

8 2910 158.763 22.289320 0.103493 2583 119.055 22.289302 0.088221

16 11613 626.894 22.280893 0.051662 10155 468.649 22.280909 0.045343

32 46380 2511.261 22.277439 0.026000 40149 1723.136 22.277450 0.022639

Mirror Descent algorithm, in particular for stochastic and online optimiza-

tion problems. A significant part of the work was devoted to the research

of a special case of relative Lipschitz condition for objective function and

functional constraints. The proposed methods are applicable for a wide class

of problems because relative Lipschitz-continuity is an essential generaliza-

tion of the classical Lipschitz-continuity. However, for relatively Lipschitz-

continuous problems, we could not propose adaptive methods like [3]. Note

that Algorithm 3 and its modified version Algorithm 7 are partially adaptive

since the resulting number of iterations is not fixed, due to the stopping cri-

terion, although the step-sizes are fixed.

The authors are very grateful to Yurii Nesterov for fruitful discussions
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Appendix A. Modified Algorithms for Problems

with Several Functional Constraints

Algorithm 6 Modified MDA for Relatively Lipschitz-continuous functions,

version 2, several functional constraints. (The modification of Algorithm 2)

Require: ε > 0, δ > 0,Mf > 0,Mg > 0,Θ0 : d(x
∗) ≤ Θ2

0.

1: x0 = argminx∈Q d(x).

2: I =: ∅

3: N ← 0

4: repeat

5: if g(xN) ≤Mgε+ δ then

6: hf = ε
Mf
,

7: xN+1 =Mirrhf (xN , ψf ), "productive step"

8: N → I

9: else

10: // gp(N)(x
N) > Mgε+ δ for some p(N) ∈ [m]

11: hgp(N) = ε
Mgp(N)

//Mgp(N)
is the Lipschitz constant of the constraint

gp(N).

12: xN+1 =Mirrhgp(N) (xN , ψgp(N)
), "non-productive step"

13: end if

14: N ← N + 1

15: until N ≥
2Θ2

0

ε2
.

Ensure: x̂ := 1
|I|
∑
k∈I

xk.

For the proposed modified Algorithm 6, the following result holds.

Theorem 5.1. Let f and g be convex functions, which satisfy (2.10) and

(2.11) for Mf > 0 and Mg > 0. Let ε > 0, δ > 0 be fixed positive numbers.

Assume that Θ0 > 0 is a known constant such that d(x∗) ≤ Θ2
0. Then, after

the stopping of Algorithm 6, the following inequalities hold

f(x̂)− f(x∗) ≤ Mgε+ δ and gp(k)(x̂) ≤Mgε+ δ,

where, by gp(k) we mean any constraint such that the inequality gp(k)(x
k) >

Mgε+ δ holds.

Similarly, for the proposed modified Algorithm 7, we have the following

result.
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Algorithm 7 Modified MDA for Relatively Lipschitz-continuous functions,

version 2, several functional constraints. (The modification of Algorithm 3)

Require: ε > 0, δ > 0,Mf > 0, Θ0 : d(x
∗) ≤ Θ2

0.

1: x0 = argminx∈Q d(x).

2: I =: ∅ and J =: ∅

3: N ← 0

4: repeat

5: if g(xN) ≤ ε+ δ then

6: hf = ε
M2

f

,

7: xN+1 =Mirrhf (xN , ψf ), "productive step"

8: N → I

9: else

10: // gp(N)(x
N) > ε+ δ for some p(N) ∈ [m]

11: hgp(N) = ε
M2

gp(N)

//Mgp(N)
is the Lipschitz constant of the constraint

gp(N).

12: xN+1 =Mirrhgp(N) (xN , ψgp(N)
), "non-productive step"

13: N → J

14: end if

15: N ← N + 1

16: until
2Θ2

0

ε2
≤ |I|

M2
f

+
∑
k∈J

1
M2

gp(k)

.

Ensure: x̂ := 1
|I|
∑
k∈I

xk.

Theorem 5.2. Let f and g be convex functions, which satisfy (2.10) and

(2.11) for Mf > 0 and Mg > 0. Let ε > 0, δ > 0 be fixed positive numbers.

Assume that Θ0 > 0 is a known constant such that d(x∗) ≤ Θ2
0.

Then, after the stopping of Algorithm 7, the following inequalities hold

f(x̂)− f(x∗) ≤ ε+ δ and gp(k)(x̂) ≤ ε+ δ.

Moreover, if g(x) = max
p∈[m]
{gp(x)} satisfies (2.13), then the required number of

iterations of Algorithm 7 does not exceed

N =
2M2Θ2

0

ε2
, where M = max{Mf ,Mg}.
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Appendix B. The proof of Theorem 3.1.

Denote

γk =

{
〈∇f(xk, ξk)−∇f(xk), x∗ − xk〉 if k ∈ I,

〈∇g(xk, ζk)−∇g(x), x∗ − xk〉 if k ∈ J .
(5.21)

By Lemma 3.1, we have for all k ∈ I

hf
(
f(xk)− f(x∗)

)
≤ φ∗

f(h) + Vd(x
k, x∗)− Vd(x

k+1, x∗)+

+ hf
〈
∇f(xk, ξk)−∇f(xk), x∗ − xk

〉
+ hfδ,

the same for all k ∈ J , we have

hg
(
g(xk)− g(x∗)

)
≤ φ∗

g(h) + Vd(x
k, x∗)− Vd(x

k+1, x∗)+

+ hg
〈
∇g(xk, ζk)−∇g(xk), x∗ − xk

〉
+ hgδ.

By taking summation, in each side of both previous inequalities, over

productive and non-productive steps, we get

∑

k∈I
hf
(
f(xk)− f(x∗)

)
+
∑

k∈J
hg
(
g(xk)− g(x∗)

)
≤

≤
∑

k∈I
φ∗
f(h

f )+
∑

k∈J
φ∗
g(h

g)+
∑

k

(
Vd(x

∗, xk)− Vd(x
∗, xk+1)

)
+
∑

k∈I
(hfδ+γk)+

∑

k∈J
(hgδ+γk) ≤

∑

k∈I
φ∗
f(h

f ) +
∑

k∈J
φ∗
g(h

g) + Θ2
0 +

∑

k∈I
hfδ +

∑

k∈J
hgδ +

∑

k∈I
hfγk +

∑

k∈J
hgγk.

For each k ∈ J, g(xk)− g(x∗) > ε+ δ and we have

∑

k∈I
hf(f(x̂)− f(x∗)) ≤

∑

k∈I
φ∗
f(h

f) +
∑

k∈J
φ∗
g(h

g) + Θ2
0 − ε

∑

k∈J
hg +

∑

k∈I
hfδ

+
∑

k∈I
hfγk +

∑

k∈J
hgγk = |I|

(
φ∗
f(h

f) + δhf
)
+ |J |φ∗

g(h
g)− |J |εhg

+Θ2
0 +

∑

k∈I
hfγk +

∑

k∈J
hgγk ≤ ε|I|hf + |I|hfδ +

∑

k∈I
hfγk +

∑

k∈J
hgγk.

Now from the definition of x̂ (the Ensure of Algorithm 4) and by taking

the expectation we obtain

E[f(x̂)]− f(x∗) ≤ ε+ δ + E

[
∑

k∈I

γk
|I|

]
+ E

[
∑

k∈J

γk
|J |

]
= ε+ δ,

as well as g(x̂) ≤ ε+ δ.
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Appendix C. The proof of Theorem 4.1.

By Lemma 1.1, we have for all k ∈ I

h
(
fi(x

k)− fi(y)
)
≤ φ∗(h) + Vd(y, x

k)− Vd(y, x
k+1) + hδ, (5.22)

the same for all k ∈ J , we have

h
(
g(xk)− g(y)

)
≤ φ∗(h) + Vd(y, x

k)− Vd(y, x
k+1) + hδ. (5.23)

By taking summation, in each side of (5.22) and (5.23), over productive and

non-productive steps, we get

N∑

i=1

h
(
fi(x

k)− fi(x
∗)
)
+
∑

k∈J
h
(
g(xk)− g(x∗)

)
≤ (N + |J |) (φ∗(h) + hδ)+

+
∑

k

(
Vd(x

∗, xk)− Vd(x
∗, xk+1)

)

≤ (N + |J |) (φ∗(h) + hδ) + Θ2
0.

Then

N∑

i=1

fi(x
k)− fi(x

∗) ≤ |J |

(
M2φ∗(h)

ε
+ δ

)
+N

(
M2φ∗(h)

ε
+ δ

)
+
M2Θ2

0

ε
− |J |ε− |J |δ

= |J |

(
M2φ∗(h)

ε
− ε

)
+N

(
M2φ∗(h)

ε
+ δ

)
+
M2Θ2

0

ε
,

and then we get

1

N

N∑

i=1

fi(x
k)−min

x∈Q

1

N

N∑

i=1

fi(x) ≤
|J |

N

(
M2φ∗(h)

ε
− ε

)
+

(
M2φ∗(h)

ε
+ δ

)
+
M2Θ2

0

Nε
.

Recall that φ∗(h) = h2M2

2
, so

1

N

N∑

i=1

fi(x
k)−min

x∈Q

1

N

N∑

i=1

fi(x) ≤
|J |

N

(
hM2

2
− ε

)
+

(
hM2

2
+ δ

)
+
M2Θ2

0

Nε

=
|J |

N

(ε
2
− ε
)
+
(ε
2
+ δ
)
+
M2Θ2

0

Nε
.

and by virtue of (4.18), we get

1

N

N∑

i=1

fi(x
k)−min

x∈Q

1

N

N∑

i=1

fi(x) ≤ κ. (5.24)
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Assuming the non-negativity of the regret (i.e. the left side in (5.24)):

0 ≤
N∑

i=1

fi(x
k)− fi(x

∗) ≤ |J |

(
hM2

2
− ε

)
+N

(
hM2

2
+ δ

)
+
M2Θ2

0

ε

= |J |
(
−
ε

2

)
+N

(ε
2
+ δ
)
+
M2Θ2

0

ε
,

so

|J | ≤ N

(
1 +

2δ

ε

)
+

2M2Θ2
0

ε2
.

Suppose κ ∼ ε ∼ δ = C√
N
, for some C > 0, then we get

|J | ∼ O(N) = N

(
3 +

2M2Θ2
0

C2

)
.

It means that the considered method is optimal for OCO, according to [15].
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