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Alternating Minimization Methods for Strongly
Convex Optimization

Nazarii Tupitsa, Pavel Dvurechensky, Alexander Gasnikov and
Sergey Guminov

Abstract. We consider alternating minimization procedures for convex optimization prob-
lems with variable divided in many block, each block being amenable for minimization
with respect to its variable with freezed other variables blocks. In the case of two blocks,
we prove a linear convergence rate for alternating minimization procedure under Polyak-
ÅĄojasiewicz condition, which can be seen as a relaxation of the strong convexity as-
sumption. Under strong convexity assumption in many-blocks setting we provide an ac-
celerated alternating minimization procedure with linear rate depending on the square root
of the condition number as opposed to condition number for the non-accelerated method.
We also mention an approximating non-negative solution to a linear system of equations
Ax = y with alternating minimization of Kullback-Leibler (KL) divergence between Ax
and y.
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1 Introduction

In this paper we consider the minimization problem

min
x∈Q⊂Rm

f(x), (1.1)

where f(x) is a smooth convex function with L-Lipschitz-continuous gradient.
Further, our main assumption is that the space Rm can be divided into n disjoint
subspaces Li ∈ Rni ,

∑
ni = m, s.t. ∪Li = Rm and it is possible to minimize the

objective f in each block if the variables in all other blocks are fixed. Moreover, we
are mostly interested in obtaining linear convergence rate and sufficient conditions
for it.
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of Science and Higher Education of the Russian Federation (Goszadaniye) No075-00337-20-03,
project No. 0714-2020-0005.
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To be exact, we suppose that f has a block structure, i.e. f(x) = f(x1, . . . , xn),
and we know exact expression for the minimizer over i-th block

x∗i = argmin
z∈Qi⊂Li

f(x1, . . . , xi−1, z, xi+1, . . . , xn).

where ∪Qi = Q.
A very old and natural idea under this assumption is to use alternating mini-

mization procedure [4, 22], where the objective is minimized sequentially in each
block. First of all, we are interested in the convergence rate analysis of this type
of algorithms. For smooth strongly convex problems under some additional tech-
nical assumptions, the linear rate was obtained in [17]. In [2] the author analyze
alternating minimization procedure for the case of two blocks in the general con-
vex setting. The underlying assumption is presence of a smooth component in at
least one block of variables. Also non-smoothness is possible via composite terms
which still allow the block minimization. Since there is no strong convexity as-
sumption, the obtained convergence rate is sublinear, namely O(1/k), where k is
the iteration counter. Similar result, but for many-block setting was obtained in
[13, 24]. In the fully smooth setting under strong convexity assumption [21] ob-
tain linear rate of convergence also for the many-block setting. This linear rate is
proportional to κ – efficient condition number of the problem. The autors of [7]
provide an accelerated alternating minimization method for a very special prob-
lem with two blocks having the form of a sum of a quadratic function with two
proximally friendly composite terms. The obtained convergence rate is O(1/k2)
for convex setting and is linear with exponent

√
κ in the strongly convex case.

The authors of [9] analyze a non-accelerated alternating minimization method and
obtain O(1/k) convergence rate in the convex setting and linear rate with expo-
nent κ for strongly convex case. They also propose an accelerated method for
general convex setting with rate O(1/k2) and conjecture that their analysis can be
extended for the strongly convex case. Interested readers can look also into the
review [12].

In this paper we, firstly, focus on obtaining linear rate of convergence for non-
accelerated method with the exponent κ in a more general setting of Polyak-
ÅĄojasiewicz condition [23]. This assumption is weaker than the strong convexity
assumption since it follows from the strong convexity. Secondly, we propose an ac-
celerated alternating minimization method for general smooth objective functions
in the many-blocks setting. For this method we obtain accelerated convergence
rate

O

(
min

{
1
k2 ,
(
1−
√
κ
)k})

.

From the perspective of applications, many existing statistical algorithms can be
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derived as alternating minimization of KullbackâĂŞLeibler (KL) divergence [8].
These include the expectation maximization (EM) algorithm for likelihood max-
imization [1, 25], the Bayesian maximum a posteriori (MAP) method with
gamma-distributed priors [16], the multiplicative algebraic reconstruction tech-
nique (MART) [10] and the "simultaneous" MART (SMART) algorithm [5]. Each
of these algorithms can be viewed as an algorithm to find an approximate non-
negative solution to a linear system Ax = y. For example, the SMART can be
shown to minimize KL(Ax, y) [5]. Some other application of optimization to in-
verse problems can be found in [6, 26, 27].

Another example is a system of nonlinear equations g(x) = 0, where g : Rn →
Rm, m < n and there exists some µ s.t. for any x ∈ Rn

λmin

(
∂g(x)

∂x

[
∂g(x)

∂x

]T)
> µ.

Then the function f(x) = ‖g(x)‖2
2 satisfies Polyak-ÅĄojasiewicz condition [20],

and the algorithms analyzed here can be applied and have linear convergence rate.

2 Simple alternating minimization algorithm and notation

Consider for simplicity alternating minimization algorithm for the problem with
only two block structure. All the following results and proofs can be easily ex-
tended for any number of blocks.

Consider alternating minimization Algorithm 1 for the problem

min
x1∈Q1,x2∈Q2

F (x1, x2) ≡ f(x1, x2) + g1(x1) + g2(x2), (2.1)

where f(x) is a smooth convex function with L-Lipschitz-continuous gradient and
each gi(x) is a convex possibly non-smooth function.

Algorithm 1 Alternating Minimization (AM)

Input: Starting point x0.
Output: xk

1: Set x0.
2: for k > 0 do
3: if k mod 2 = 0 then
4: xk+1

1 = argminz∈Q1
f(z, xk2) + g1(z)

5: else
6: xk+1

2 = argminz∈Q2
f(xk+1

1 , z) + g2(z)
7: end if
8: end for
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We introduce the following notation:

xk = (xk1 , x
k
2), xk+

1
2 = (xk+1

1 , xk2)

TM (x) = (T 1
M (x), T 2

M (x)) GM (x) = (G1
M (x), G2

M (x))

T iM (x) = prox 1
M
gi

(
xi −

1
M
∇if(x)

)
, GiM (x) =M(xi − T iM (x)) (2.2)

For the case i = 1

T 1
M (xk) = argmin

u∈Q1

(
g1(u) +

M

2
‖u− (xk1 −

1
M
∇1f(x

k))‖2
)

=

= argmin
u∈Q1

(
g1(u) +

M

2
‖u− xk1‖2 + 〈∇1f(x

k), u− xk1〉
)
.

Next we write

∂1F (x
k+1
1 , xk2) = ∇1f(x

k+1
1 , xk2) + ∂g1(x

k+1
1 )

∂2F (x
k
1 , x

k
2) = ∇2f(x

k
1 , x

k
2) + ∂g2(x

k
2),

where ∂1F (x
k+1
1 , xk2) denotes a subgradient of F w.r.t first block, e.g. such a set

S, that for all s ∈ S the following holds

F (y, xk2) > F (xk+1
1 , xk2) + 〈s, y − xk+1

1 〉.

∂2F (x
k
1 , x

k
2) is defined similarly.

Then, optimality conditions can be written as follows:

〈∇1f(x
k+1
1 , xk2), u− xk+1

1 〉 > 〈−∂g1(x
k+1
1 ), u− xk+1

1 〉

〈∇2f(x
k
1 , x

k
2), v − xk2〉 > 〈−∂g2(x

k
2), v − xk2〉 (2.3)

for all u ∈ Q1, v ∈ Q2.
The following should clarify the notation.

Lemma 2.1. For points, generated by Algorithm 1 the following holds

G1
M (xk+

1
2 ) = 0, G2

M (xk) = 0

T 2
M (xk) = xk2 , T 1

M (xk+
1
2 ) = xk+1

1

for all k.
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Proof.

T 2
M (xk) = argmin

v∈Q2

(
g2(v) +

M

2
‖v − xk2‖2 + 〈∇2f(x

k), v − xk2〉
)

= xk2 ,

The first is that 〈∂g2(x
k
2) + ∇2f(x

k
1 , x

k
2), v − xk2〉 > 0 for all v ∈ Q2 by (2.3),

second 〈∂‖v−xk2‖2; v−xk2〉 > 0 since xk2 is a minimizer of ‖v−xk2‖2. Summing
this two inequalities implies optimality condition for T 2

M (xk) at the point xk2 .

G2
M (xk) =M(xk2 − T 2

M (xk)) =M(xk2 − xk2) = 0,

where the last equality follows from the definition of G2
M (xk).

Introduce also the following notation:

D1(x
k,M)

≡ −2M min
u∈Q1

[
〈∇1f(x

k), u− xk1〉+
M

2
||u− xk1 ||2 + g1(u)− g1(x

k
1)
]

(2.4)

D2(x
k+ 1

2 ,M)

≡ −2M min
v∈Q2

[
〈∇2f(x

k+ 1
2 ), v − xk2〉+

M

2
||v − xk2 ||2 + g2(v)− g2(x

k
2)
]
.

(2.5)

Notice that TM (xk) and TM (xk+
1
2 ) are corresponding minimizers of these two

above problems.

3 Proximal Polyak-ÅĄojasiewicz condition

In this section we prove that strongly convex function satisfies the proximal-PL
inequality condition [14].

We suppose, that strong convexity parameter can different for different variable
blocks:

f(u, v) > f(ξ, η) + 〈∇1f(ξ, η), u− ξ〉+ 〈∇2f(ξ, η), v − η〉

+
µ1

2
‖u− ξ‖2 +

µ2

2
‖v − η‖2,

for any u, ξ ∈ Q1 and v, η ∈ Q2. Notice, that the single variable definition can be
written with µ = min(µ1, µ2).

The main result of this section reads as follows.
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Theorem 3.1. If f is strongly convex and g is convex, then F (x) = f(x) + g(x)
satisfies proximal PL-conditions

F ∗ > F (xk)− 1
2µ1
D1(x

k, µ1), F ∗ > F (xk+
1
2 )− 1

2µ2
D2(x

k+ 1
2 , µ2), (3.1)

for the points xk and xk+
1
2 , generated by Algorithm 1.

Proof. By the strong convexity of f we have

f(u, v) > f(xk1 , x
k
2) + 〈∇1f(x

k
1 , x

k
2), u− xk1〉+ 〈∇2f(x

k
1 , x

k
2), v − xk2〉

+
µ1

2
‖u− xk1‖2 +

µ2

2
‖v − xk2‖2 1©

>

1©
> f(xk1 , x

k
2) + 〈∇1f(x

k
1 , x

k
2), u− xk1〉 − 〈∂g2(x

k
2), v − xk2〉+

µ1

2
‖u− xk1‖2 2©

>

2©
> f(xk1 , x

k
2) + 〈∇1f(x

k
1 , x

k
2), u− xk1〉+ g2(x

k
2) + g2(v) +

µ1

2
‖u− xk1‖2

where

• 1© by (2.3)

• 2© by convexity of g2

which leads to

F (u, v)

> F (xk1 , x
k
2) + 〈∇1f(x

k
1 , x

k
2), u− xk1〉 − g1(x

k
1) + g1(u) +

µ1

2
‖u− xk1‖2.

Minimizing both sides respect to u ∈ Q1, v ∈ Q2,

F ∗ > F (xk) + min
u

[
〈∇1f(x

k), u− xk1〉+
µ1

2
||u− xk1 ||2 + g1(u)− g1(x

k
1)
]

= F (xk)− 1
2µ1
D1(x

k, µ1). (3.2)

Rearranging, we have our result.
The similar result holds for the point xk+

1
2 :

F ∗ > F (xk+
1
2 )− 1

2µ2
D2(x

k+ 1
2 , µ2).
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We also need the Corollary 1 from [14], which proof is almost the same as the
proof of the following lemma:

Lemma 3.2. For any differentiable function f and any convex function g, given
λ2 > λ1 > 0 we have

D1(x
k, λ2) > D1(x

k, λ1),

D2(x
k+ 1

2 , λ2) > D2(x
k+ 1

2 , λ2).

Proof. By convexity of g for 0 < α < 1

g(αz) = g(αz + (1− α) · 0) 6 αg(z) + (1− α)g(0).

Then with z = ζ
λ1

and α = λ1
λ2

g

(
ζ

λ2

)
− g(0) 6 λ1

λ2

(
g

(
ζ

λ1

)
− g(0)

)
λ2 ·

(
g

(
ζ

λ2

)
− g(0)

)
6 λ1 ·

(
g

(
ζ

λ1

)
− g(0)

)
Then move values of our function:

λ2 ·

(
g

(
ζ

λ2
+ xk1

)
− g(0 + xk1)

)
6 λ1 ·

(
g

(
ζ

λ1
+ xk1

)
− g(0 + xk1)

)
and add to both sides

h(ζ) = 〈∇1f(x
k), ζ〉+ 1

2
||ζ||2

we have

min
ζ∈Q
〈∇1f(x

k), ζ〉+ 1
2
||ζ||2 + λ2 ·

(
g

(
ζ

λ2
+ xk1

)
− g(xk1)

)

6 min
ζ∈Q
〈∇1f(x

k), ζ〉+ 1
2
||ζ||2 + λ1 ·

(
g

(
ζ

λ1
+ xk1

)
− g(xk1)

)

Or with the change of variables ζ = λi(u− xk1)
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λ2 min
u∈ Q

λ2
+xk1

〈∇1f(x
k), u− xk1〉+

λ2

2
||u− xk1 ||2 + g (u)− g(xk1)

6 λ1 min
u∈ Q

λ1
+xk1

〈∇1f(x
k), u− xk1〉+

λ1

2
||u− xk1 ||2 + g (u)− g(xk1)

which holds if
Q

λ2
+ xk1 ⊂

Q

λ1
+ xk1 . (3.3)

For example it holds if Q = Rn.

4 Convergence

In this section we prove convergence rate of Algorithm 1. If proximal PL-
condition hold for F , then one can guarantee linear convergence rate, if not, the
convergence is polynomial. The two following subsections contain proofs of that.

4.1 Linear convergence

Lipschitz continuity of the gradient of function f w.r.t. a ‖ · ‖ implies

f(u, v) 6 f(ξ, η) + 〈∇1f(ξ, η), u− ξ〉+ 〈∇2f(ξ, η), v − η〉

+
L1

2
‖u− ξ‖2 +

L2

2
‖v − η‖2, (4.1)

where again we suppose that constant L1 and L2 can be different for different
blocks, and the the constant in the regular definition of Lipshitz continuity of the
gradient of f is described by L = max(L1, L2).

Theorem 4.1. If F from (2.1) satisfies the proximal-PL inequality (2.4). Then the
algorithm 1 has a linear convergence.

F (xk+1)− F ∗ 6
(

1− µ2

L2

)(
1− µ1

L1

)
[F (xk)− F ∗]. (4.2)
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Proof. By using Lipschitz continuity of the gradient of f we have

F (TL1(x
k)) = F (T 1

L1
(xk), xk2)) = f(T 1

L1
(xk), xk2) + g1(T

1
L1
(xk)) + g2(x

k
2)

= f(T 1
L1
(xk), xk2) + g1(T

1
L1
(xk)) + g2(x

k
2) + g1(x

k
1)− g1(x

k
1)

6 F (xk) + 〈∇1f(x
k), T 1

L1
(xk)− xk1〉+

L1

2
||T 1

L1
(xk)− xk1 ||2

+ g1(T
1
L1
(xk))− g1(x

k
1)

6 F (xk)− 1
2L1
D1(xk, L1) 6 F (xk)− µ1

L1
[F (xk)− F ∗],

which uses the definition of TM (xk) andD1 followed by the proximal-PL inequal-
ity (3.1). This subsequently implies that

F (xk+
1
2 )− F ∗ 6 F (TL1(x

k))− F ∗ 6
(

1− µ1

L1

)
[F (xk)− F ∗],

The same derivation for the point xk+
1
2 gives

F (xk+1)− F ∗ 6 F (TL2(x
k+ 1

2 ))− F ∗ 6
(

1− µ2

L2

)
[F (xk+

1
2 )− F ∗],

as well as the result of the theorem.

Notice that above derivation does not require specification of what norm is used,
so the above theorem guarantees that alternating minimization is better than the
gradient methods w.r.t. any norm. In other words, alternating minimization pick
up the geometric structure of the problem automatically and convergence rate of
AM algorithm is not worse than the convergence rate of the gradient method in the
basis with the best possible condition number.

Example with ‖x‖A =
√

〈Ax, x〉

As an example we consider here a norm endowed with a matrix. The following
result can be found in the 14-th chapter of [3] or in [18]

‖G2
M2

(xk+
1
2 )‖2

2 6 2L2

(
f(xk+

1
2 )− f(xk+1)

)
(4.3)

‖G1
M1

(xk)‖2
2 6 2L1

(
f(xk)− f(xk+

1
2 )
)

(4.4)
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where again we suppose that constant L1 and L2 can be different for different
blocks:

f(u, v) 6 f(ξ, η)

+ 〈∇1f(ξ, η), u− ξ〉+ 〈∇2f(ξ, η), v − η〉+
L1

2
‖u− ξ‖2

2 +
L2

2
‖v − η‖2

2,

and the the constant in the regular definition of Lipshitz continuity of the gradient
of f is described by L = max(L1, L2).

Let also consider a norn endowed with a matrix:

‖x‖2
A = 〈Ax, x〉.

We can guarantee that the following holds for any matrix A

‖∇2f(x
k+ 1

2 )‖2
A−1 6 2LA2

(
f(xk+

1
2 )− f(xk+1)

)
‖∇1f(x

k)‖2
A−1 6 2LA1

(
f(xk)− f(xk+

1
2 )
)

where
Let suppose that PL-conditions can be satisfied in the other basis

µB1
1

(
f(xk+

1
2 )− f(x∗)

)
6 ‖∇1f(x

k)‖2
B−1

1

µB2
2

(
f(xk+1)− f(x∗)

)
6 ‖∇2f(x

k+ 1
2 )‖2

B−1
2
,

for all B1 ∈ B1 and B2 ∈ B2. Then

f(xk+1)−f(x∗) 6 min
B2∈B2

(
1−

µB2
2

LB2
2

)
× min
B1∈B1

(
1−

µB1
1

LB1
1

)
×
(
f(xk)− f(x∗)

)
.

4.2 Polynomial convergence

Our analysis mainly relies on the fact that alternating step is not worse than any
step of any method w.r.t the only block of variables, e.g.

f(xk+1
1 , xk2) = min

z∈Q1
f(z, xk2) 6 f

(
Step(xk), xk2

)
,

since xk+1
1 = argminz∈Q1

f(z, xk2).
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In particular if Step(x) defined as gradient step w.r.t. p norm

Step1(x) = argmin
u∈Rn1

f(x) + 〈∇1f(x), u− x1〉+
Lp
2
‖u− x1‖2

p,

and

Step2(x) = argmin
v∈Rn2

f(x) + 〈∇2f(x), v − x2〉+
Lp
2
‖v − x2‖2

p,

[15] guarantee that

f(xk)− f(Step(xk)) >
1

2Lp
‖∇f(xk)‖2

p∗,

and

f(xN )− f∗ .
LpR

2
p

N
,

where
R2
p = max

x:f(x)6f(x0)
‖x− x ∗ ‖p.

So for alternating minimization we can guarantee

f(xN )− f∗ 6 min
p∈[1,∞]

2LpR2
p

N

5 Accelerated Alternating Minimization

In this section we describe accelerated method for alternating minimization, which
is originates in [19]. But before notice, that algorithm 1 does not use the constant
of strong convexity and consequently adapts to strong convexity of the problem. If
the problem is non-strongly convex or PL condition is not satisfied the algorithm
1 possesses the following convergence rate

f(xN )− fopt 6 max
{
f(x0)− fopt

2(N−1)/2 ,
8 min(L1, L2)R

2

N − 1

}
.

The proof can be found in [3]. The following algorithm requires the knowing of
the parameter µ of strong convexity. But it is possible to use this method with
µ = 0. In this case the algorithm turns exactly into algorithm 1 from [11]. The
other interesting result that in the case method started with µ = 0 method auto-
matically adapts to strong convexity of the problem and poses at least the same
linear convergence rate as a gradient descent (see Lemma 5.3).
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The set {1, . . . ,m} of indices of the orthonormal basis vectors {ei}mi=1 is
divided into n disjoint subsets (blocks) Ik, k ∈ {1, . . . , n}. Let Sk(x) =
x + span{ei : i ∈ Ik}, i.e. the affine subspace containing x and all the points
differing from x only over the block k. We use xi to denote the components of x
corresponding to the block i and ∇if(x) to denote the gradient corresponding to
the block i. We will further require that for any k ∈ {1, . . . , n} and any z ∈ Rm
the problem f(x)→ min

x∈Si(z)
has a solution, and this solution is easily computable.

Algorithm 2 Accelerated Alternating Minimization (AAM)

Input: Starting point x0
Output: xk

1: Set A0 = 0, x0 = v0, τ0 = 1
2: for k > 0 do
3: Set

βk = argmin
β∈[0,1]

f
(
xk + β(vk − xk)

)
(5.1)

4: Set yk = xk + βk(v
k − xk) {Extrapolation step}

5: Choose ik = argmax
i∈{1,...,n}

‖∇if(yk)‖2

6: Set xk+1 = argmin
x∈Sik (y

k)

f(x) {Block minimization}

7: If L is known choose ak+1 s.t.
a2
k+1

(Ak+ak+1)(τk+µak+1)
= 1

Ln
If L is unknown, find largest ak+1 from the equation

f(yk)−
a2
k+1

2(Ak + ak+1)(τk + µak+1)
‖∇f(yk)‖2

2+

µτkak+1

2(Ak + ak+1)(τk + µak+1)
‖vk − yk‖2

2 = f(xk+1) (5.2)

8: Set Ak+1 = Ak + ak+1, τk+1 = τk + µak+1
9: Set vk+1 = vk − ak+1∇f(yk). {Update momentum term}

10: end for

We will begin with one key Lemma. Let us introduce an auxiliary functional
sequence defined as

ψ0(x) =
1
2
‖x− x0‖2

2,

ψk+1(x) = ψk(x) + ak+1{f(yk) + 〈∇f(yk), x− yk〉 +
µ

2
‖x− yk‖2

2}.
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For

lk(x) =
k∑
i=0

ai+1{f(yi) + 〈∇f(yi), x− yi〉 +
µ

2
‖x− yi‖2

2}

we can write
ψk+1(x) = ψ0(x) + lk(x)

It is easy to see that ψk(x) is τk strongly convex function with

τk = 1 + µ

k∑
i=0

ai = 1 + µAk.

Lemma 5.1. After k steps of Algorithm 2 it holds that

Akf(x
k) 6 min

x∈Rm
ψk(x) = ψk(v

k). (5.3)

Moreover, if the objective is L-smooth and µ-strongly convex

Ak > max

{
k2

4Ln
,

1
nL

(
1−

√
µ

nL

)−k−1
}
,

where n is the number of blocks.

Proof. First, we prove inequality (5.3) by induction over k. For k = 0, the in-
equality holds. Assume that

Akf(x
k) 6 min

x∈Rm
ψk(x) = ψk(v

k).

Then

ψk+1(v
k+1) = min

x∈Rm

{
ψk(x)+ak+1{f(yk)+〈∇f(yk), x−yk〉+

µ

2
‖x−yk‖2

2}

}

> min
x∈Rm

{
ψk(v

k) +
τk
2
‖x− vk‖2

2 + ak+1{f(yk) + 〈∇f(yk), x− yk〉

+
µ

2
‖x− yk‖2

2}

}

> min
x∈Rm

{
Akf(x

k) +
τk
2
‖x− vk‖2

2 + ak+1{f(yk) + 〈∇f(yk), x− yk〉

+
µ

2
‖x− yk‖2

2}

}
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Here we used that ψk is a strongly convex function with minimum at vk and that
f(yk) 6 f(xk).

By the optimality conditions for the problem min
β∈[0,1]

f
(
xk + β(vk − xk)

)
, either

(i) βk = 1, 〈∇f(yk), xk − vk〉 > 0, yk = vk;

(ii) βk ∈ (0, 1) and 〈∇f(yk), xk − vk〉 = 0, yk = vk + βk(x
k − vk);

(iii) βk = 0 and 〈∇f(yk), xk − vk〉 6 0, yk = xk .

In all three cases, 〈∇f(yk), vk − yk〉 > 0.
Thus

ψk+1(v
k+1) > min

x∈Rm

{
Akf(y

k)+
τk
2
‖x−vk‖2

2+ak+1{f(yk)+〈∇f(yk), x−yk〉

+
µ

2
‖x− yk‖2

2}
}

The explicit solution to the above quadratic optimization problem is

x =
1

τk+1
(τkv

k + µak+1y
k − ak+1∇f(yk))

By plugging in the solution and using 〈∇f(yk), vk − yk〉 > 0, we obtain

ψk+1(v
k+1) > Ak+1f(y

k)−
a2
k+1

2τk+1
‖∇f(yk)‖2

2 +
µτkak+1

2τk+1
‖vk − yk‖2

2.

Our next goal is to show that

Ak+1f(y
k)−

a2
k+1

2τk+1
‖∇f(yk)‖2

2 +
µτkak+1

2τk+1
‖vk − yk‖2

2 > Ak+1f(x
k+1)

which proves the induction step.
To do this, by the L-smoothness of the objective, we have ∀i

f(yk)− 1
2L
‖∇if(yk)‖2

2 > f(xk+1
i ),

where xk+1
i = argminx∈Si f(x). Since ik = argmaxi ‖∇if(yk)‖2

2,

‖∇ikf(y
k)‖2

2 >
1
n
‖∇f(yk)‖2

2
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and

f(yk)− 1
2Ln
‖∇f(yk)‖2

2 > f(yk)− 1
2L
‖∇ikf(y

k)‖2
2 > f(xk+1),

Choosing ak+1 such that
a2
k+1

2Ak+1τk+1
> 1

2Ln implies

Ak+1f(y
k)−

a2
k+1

2τk+1
‖∇f(yk)‖2

2 +
µτkak+1

2τk+1
‖vk − yk‖2

2

> Ak+1f(y
k)−

a2
k+1

2τk+1
‖∇f(yk)‖2

2 > Ak+1f(y
k)− Ak+1

2Ln
‖∇f(yk)‖2

2

> Ak+1f(x
k+1)

which proves the induction step.

Rewriting the rule for choosing ak+1 gives
a2
k+1

(Ak+ak+1)(τk+µak+1)
> 1

Ln .

Let us estimate the rate of the growth for Ak. τk = 1 + µ
∑k

i=0 ai = 1 + µAk.
a2
k+1

2Ak+1τk+1
> 1

2Ln

a2
k >

Akτk
nL

=
Ak + µA2

k

nL

ak >
1√
nL

√
Ak + µA2

k >

√
µ

2Ln
Ak (5.4)

√
Ai −

√
Ai−1 >

Ai −Ai−1√
Ai +

√
Ai−1

>
ai

2
√
Ai

>

√
1 + µAi

2
√
Ln

Summing it up for i = 1, . . . , k we get

Ak >
k2

4Ln

We also have

Ak+1 = Ak + ak+1 > Ak +

√
µ

nL
Ak+1

which leads to

Ak+1 >

(
1−

√
µ

nL

)−1

Ak
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To use this bound we only need to estimate A1 , which we can do as follows:

A1 =
a2

1
A1

>
a2

1
(1 + µA1)A1

>
a2

1
A1τ1

>
1
nL

By recursively applying the last bound we reach the desired result:

Ak > max

{
k2

4Ln
,

1
nL

(
1−

√
µ

nL

)−k+1
}

Theorem 5.2. After k steps of Algorithm 2 it holds that

f(xk)− f(x∗) 6 nLR2 min

{
4
k2 ,

(
1−

√
µ

nL

)k−1
}

(5.5)

Proof. From the convexity of f(x) we have

lk(x∗) =
k∑
i=0

ai+1(f(y
i)+ 〈∇f(yi), x∗− yi〉+

µ

2
‖x∗− yi‖2

2) 6 Ak+1f(x∗).

From Lemma (5.1) we have

Akf(x
k) 6 ψk(v

k) 6 ψk(x∗) =
1
2
‖x∗ − x0‖2

2

+
k−1∑
i=0

ai+1(f(y
i)+〈∇f(yi), x∗−yi〉+

µ

2
‖x∗−yi‖2

2) 6 Akf(x∗)+
1
2
‖x∗−x0‖2

2

f(xk)− f(x∗) 6
R2

2Ak
6 nLR2 min

{
4
k2 ,

(
1−

√
µ

nL

)k−1
}
.

The other observation explains behaviour of this method when µ is unknown.

Lemma 5.3. Algorithm 2 started with µ = 0 automatically adapts to strong con-
vexity of the problem and has linear convergence:

f(xk+1)− f(x∗) 6 Π
k−1
i=0

(
1− µ

L̂i

)
· (f(x0)− f(x∗)),

where L̂i =
Ai+ai+1
a2
i+1

is the upper bound on L at the i-th iteration.
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Proof. (5.2) with µ = 0 implies sufficient decrease result:

f(yk)−
a2
k+1

2(Ak + ak+1)
‖∇f(yk)‖2

2 = f(xk+1) > f(yk+1)

since (5.1) implies that f(yk) 6 f(xk). By combining this result with PL-
condition

‖∇f(yk)‖2
2 > 2µ

(
F (yk)− F (x∗)

)
we have linear convergence

(
f(yk+1)− f(x∗)

)
6

(
1−

µa2
k+1

Ak + ak+1

)(
f(yk)− f(x∗)

)
6 Π

k
i=0

(
1−

µa2
i+1

Ai + ai+1

)(
f(x0)− f(x∗)

)
And finally block minimization step guarantees that f(xk+1) 6 f(yk), so we have

f(xk+1)− f(x∗) 6 Π
k−1
i=0

(
1−

µa2
i+1

Ai + ai+1

)(
f(x0)− f(x∗)

)

6 Application

Consider the following problem of minimazing a quadratic function

f(z) = ‖Wz − b‖2
2 → min

z
(6.1)

this is a strongly convex function with µ = λmin(W
TW ).

This problem can be solved with algorithm 1 by splitting the vector variable z
into two vector variables with the dimension:

z =

(
x

y

)
.

Then split matrix W into four blocks with the same size

W =

(
AB

CD

)
.
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and vector b

b =

(
d

c

)
.

The equivalent problem to (6.1) is

‖Ax+By − c‖2
2 + ‖Cx+Dy − d‖2

2 → min
x,y

and the iterations of the algorithm 1 can be written explicitly

xk+1 = (ATA+ CTC)−1[AT (c−Byk) + CT (d−Dyk)
]

yk+1 = (BTB +DTD)−1[BT (c−Axk) +DT (d− Cxk)
]

Next we provide comparison between Algorithm 1, Algorithm 2 started with
µ = 0 and µ = µ∗, and the following accelerated algorithm

Algorithm 3 Fast Gradient Method (FGM)
Input: Starting point z0.
Output: zk

1: Set v0 = z0.
2: for k > 0 do
3: zk+1 = vk − 1

L∇f(v
k)

4: vk+1 = zk + k
k+3(z

k+1 − zk)
5: end for

7 Linear convergence under general convex constraint sets

The proof of linear convergence relies on Lemma 3.2, which requires special struc-
ture of constraint sets (3.3). For general convex constraints, we was able to prove
only a weaker result, which is presented in this section.

The following lemma is used instead of Theorem 4.1 and Lemma 3.2.

Lemma 7.1. Strong convexity of f implies "nearly" PL-condition:

µ1

(
F (xk+

1
2 )− F (x∗)

)
6

1
2
‖G1

M1
(xk)‖2

2 (7.1)

µ2

(
F (xk+1)− F (x∗)

)
6

1
2
‖G2

M2
(xk+

1
2 )‖2

2 (7.2)
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Figure 1. Comparison for quadratic function

Proof. Consider

T 2
M (xk+

1
2 ) = argmin

u∈Q

(
g2(u) +

M2

2
‖u− (xk2 −

1
M2
∇f(xk+

1
2 ))‖2

2

)

Since T 2
M2

(xk+
1
2 ) is a minimizer, optimality condition gives for all v ∈ Q

〈∂g2(T
2
M2

(xk+
1
2 )) +∇2f(x

k+ 1
2 ) +M(T 2

M2
(xk+

1
2 )− xk2), v − T 2

M2
(xk+

1
2 )〉 > 0

or

〈∇2f(x
k+ 1

2 ), v − T 2
M2

(xk+
1
2 )〉 > 〈−∂g2(T

2
M2

(xk+
1
2 )), v − T 2

M2
(xk+

1
2 )〉

+ 〈G2
M2

(xk+
1
2 ), v − T 2

M2
(xk+

1
2 )〉 (7.3)
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Since f is strongly convex

f(u, v) > f(xk+1
1 , xk2)+〈∇1f(x

k+1
1 , xk2), u−xk+1

1 〉+〈∇2f(x
k+1
1 , xk2), v−xk2〉

+
µ1

2
‖u− xk+1

1 ‖2
2 +

µ2

2
‖v − xk2‖2

2 >

1©
> f(xk+1

1 , xk2)−〈∂g1(x
k+1
1 ), u−xk+1

1 〉+〈∇2f(x
k+1
1 , xk2), v−xk2〉+

µ2

2
‖v−xk2‖2

2

2©
> f(xk+1

1 , xk2) + g1(x
k+1
1 )− g1(u) + 〈∇2f(x

k+1
1 , xk2), v − xk2〉+

µ2

2
‖v − xk2‖2

2

3©
> f(xk+1

1 , xk2) + g1(x
k+1
1 ) + 〈∇2f(x

k+1
1 , xk2), T

2
M2

(xk+
1
2 )− xk2〉+

µ2

2
‖v− xk2‖2

2

− g1(u)− 〈∂g2(T
2
M2

(xk+
1
2 )), v − T 2

M2
(xk+

1
2 )〉+ 〈G2

M2
(xk+

1
2 ), v − T 2

M2
(xk+

1
2 )〉

4©
> f(xk+1

1 , xk2)+ g1(x
k+1
1 )− g1(u)+ 〈∇2f(x

k+1
1 , xk2), T

2
M2

(xk+
1
2 )−xk2〉− g2(v)

+ g2(T
2
M2

(xk+
1
2 )) +

µ2

2
‖v − xk2‖2

2 + 〈G2
M2

(xk+
1
2 ), v − T 2

M2
(xk+

1
2 )〉

5©
> f(xk+1

1 , T 2
M2

(xk+
1
2 ))− M2

2
‖−1
M2

G2
M2

(xk+
1
2 )‖2

2 + g1(x
k+1
1 )− g1(u)− g2(v)

+ g2(T
2
M2

(xk+
1
2 )) +

µ2

2
‖v − xk2‖2

2 + 〈G2
M2

(xk+
1
2 ), v − T 2

M2
(xk+

1
2 )〉 (7.4)

where we used:

• 1© by (2.3)

• 2© by convexity −〈∂g1(x
k+1
1 ), u− xk+1

1 〉 > g1(x
k+1
1 )− g1(u)

• 3© by (7.3)

• 4© by convexity −〈∂g2(T
2
M2

(xk+
1
2 )), v − T 2

M2
(xk+

1
2 ) > g2(T

2
M2

(xk+
1
2 )) −

g2(v)

• 5© since∇2f is L2-Lipschitz continuous, for M2 > L2 the following holds

f(xk+
1
2 ) + 〈∇2f(x

k+ 1
2 ), T 2

M2
(xk+

1
2 )− xk2〉 >

> f(xk+1
1 , T 2

M2
(xk+

1
2 ))− M2

2
‖−1
M2

G2
M2

(xk+
1
2 )‖2

2
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Above inequality gives

F (u, v) > F (xk+1
1 , T 2

M2
(xk+

1
2 ))

+
M2

2
‖−1
M2

G2
M2

(xk+
1
2 )‖2

2 +
µ2

2
‖v − xk2‖2

2 + 〈G2
M2

(xk+
1
2 ), v − xk2)〉

> F (xk+1
1 , T 2

M2
(xk+

1
2 )) +

µ2

2
‖v − xk2‖2

2 + 〈G2
M2

(xk+
1
2 ), v − xk2)〉 −→ min

v∈Rn

(7.5)

Plugging in (u, v) = x∗ we get one of the desired inequalities:

F (x∗) > F (xk+1
1 , T 2

M2
(xk+

1
2 ))− 1

2µ2
‖G2

M2
(xk+

1
2 )‖2

2

> F (xk+1)− 1
2µ2
‖G2

M2
(xk+

1
2 )‖2

2 (7.6)

‖G1
M1

(xk)‖2
2 > 2µ1

(
F (xk+

1
2 )− F (x∗)

)
(7.7)

The other inequality can be obtained the same way for the point xk:

‖G2
M2

(xk+
1
2 )‖2

2 > 2µ2

(
F (xk+1)− F (x∗)

)
(7.8)

Combining the result of the above lemma with (4.3), (4.4), we obtain conver-
gence rate:

µ1

(
F (xk+

1
2 )− F (x∗)

)
6 L1

(
F (xk)− F (xk+

1
2 )
)

(7.9)

µ2

(
F (xk+1)− F (x∗)

)
6 L2

(
F (xk+

1
2 )− F (xk+1)

)
(7.10)

(
F (xk+1)− F (x∗)

)
6 (1− µ2

L2 + µ2
)
(
F (xk+

1
2 )− F (x∗)

)
(
F (xk+

1
2 )− F (x∗)

)
6 (1− µ1

L1 + µ1
)
(
F (xk)− F (x∗)

)
(
F (xk+1)− F (x∗)

)
6

6 (1− µ2

L2 + µ2
)(1− µ1

L1 + µ1
)
(
F (xk)− F (x∗)

)
(7.11)
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