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Abstract. In this paper, we introduce some adaptive methods for solv-
ing variational inequalities with relatively strongly monotone operators.
Firstly, we focus on the modification of the recently proposed, in smooth
case [18], adaptive numerical method for generalized smooth (with Hölder
condition) saddle point problem, which has convergence rate estimates
similar to accelerated methods. We provide the motivation for such an
approach and obtain theoretical results of the proposed method. Our
second focus is the adaptation of widespread recently proposed methods
for solving variational inequalities with relatively strongly monotone op-
erators. The key idea in our approach is the refusal of the well-known
restart technique, which in some cases causes difficulties in implementing
such algorithms for applied problems. Nevertheless, our algorithms show
a comparable rate of convergence with respect to algorithms based on
the above-mentioned restart technique. Also, we present some numer-
ical experiments, which demonstrate the effectiveness of the proposed
methods.

Keywords: Saddle point problem. Hölder continuity. Variational in-
equality. Restart technique. Strongly convex programming problem.

Introduction

Non-smooth convex optimization plays a key role in solving the vast majority of
modern applied problems [6,8,10,30]. In this paper, we focus on non-smooth sad-
dle point problems and variational inequalities, which, as can be easily shown,
? The work of F. Stonyakin and A. Gasnikov was supported by the strategic academic
leadership program «Priority 2030» (Agreement 075-02-2021-1316, 30.09.2021).
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are closely related to each other [20,31]. Such settings of the optimization prob-
lems naturally arise when considering problems in machine learning [12,17], data
science [20], economic systems [5], optimal transport [11], network equilibrium
[14], game theory [26], general equilibrium theory [9,16], etc.

Remind the problem of solving Minty variational inequality. For a given op-
erator g : X → Rn, where X is a closed convex subset of some finite-dimensional
vector space, we need to find a vector x∗ ∈ X, such that

〈g(x), x∗ − x〉 6 0, ∀x ∈ X. (1)

The operator g is called L-smooth, if for any x, y, z ∈ X the following in-
equality holds

〈g(y)− g(z), x− z〉 6 LV (x, z) + LV (z, y), (2)

where V (·, ·) is the distance in some generalized sense, namely, Bregman di-
vergence (see (9), below). We also assume, that the operator g is µ–relatively
strongly monotone, i.e.

µV (y, x) + µV (x, y) 6 〈g(y)− g(x), y − x〉, ∀x, y ∈ X. (3)

The concept of relative strong monotonicity is a natural generalization of the
concept of relative strong convexity of the objective functional [23] in optimiza-
tion problems, for variational inequalities.

We are motivated by the following saddle point problem

min
x

max
y

f(x, y). (4)

Using the recently proposed new paradigm of convex optimization [3,28],
namely, relative smoothness condition, there was proposed a technique [18],
which provides the possibility of the acceleration of numerical methods for solv-
ing saddle point problems, assuming, that the gradient of the objective function
∇f(x, y) satisfies Lipschitz condition. Moreover, the proposed method is adap-
tive with respect to all Lipschitz constants of the objective’s gradient.

In this paper, we extend the considered class of saddle point problems and
replace the classical Lipschitz continuity condition

‖∇f(z)−∇f(u)‖6 L‖z − u‖, (5)

by the following Hölder continuity condition

‖∇f(z)−∇f(u)‖6 Lν‖z − u‖ν , (6)

z = (xz, yz), u = (xu, yu), with respect to the gradient of the objective, where
0 6 ν 6 1. Hereinafter we consider arbitrary non-Euclidean norms, which are
defined on the corresponding spaces unless otherwise stated.

Note, that the concept of Hölder continuity is an extremely important gener-
alization of the Lipschitz continuity condition. A huge number of applied prob-
lems can be formulated exclusively on the class of minimization of Hölder contin-
uous functionals, e.g. smooth multi-armed bandit problem [21], detecting heart



Adaptive Methods for Variational Inequalities 3

rate variability [27], etc. Also, if some function is uniformly convex, then its
conjugated will necessarily have the Hölder-continuous gradient, according to
[29].

Based on the recently proposed restart technique of the Universal Proximal
Method for solving variational inequalities [15], we propose algorithms, which
ensure the ε–approximate solution of the considered problem (1) after no more
than

N =

⌈
2LΩ

µ
log2

R2
0

ε

⌉
(7)

iterations, where µ denotes the constant of relative strong monotonicity of g, Ω
and R0 are specified in Algorithm 2 and can be understood as some character-
istics of the domain of the operator g.

The paper consists of an introduction and four main sections. In Sect. 1,
we discuss approach [7,18] to the accelerated rates of first-order methods for
strongly convex-concave saddle point problems basing on relative smoothness
and strong monotonicity conditions. Moreover, we consider generalizations of
smoothness conditions for saddle point problems. In Sect. 2, we propose adaptive
version of restarted Mirror Prox method [32] for generalized smooth problems.
Further, in Sect. 3, we propose some adaptive methods, which do not imply
the restart technique, but have the similar convergence rate estimates of the
proposed algorithm with restart technique. In Sect. 4, we present some numerical
experiments for the saddle point problem and Minty variational inequality, which
demonstrate the effectiveness of the proposed methods.

The contributions of the paper can be formulated as follows.

– We consider the non-smooth strongly convex-concave saddle point problem
and propose a restarted version of the Universal Proximal Method for the
corresponding variational inequality, which guarantees the ε–approximate
solution of the problem (1) in an optimal rate of N =

⌈
2LΩ
µ log2

R2
0

ε

⌉
itera-

tions. These algorithms are of interest in case of a huge value of the condition
number L

µ as well as in the case of considering not strongly convex-concave
saddle point problems.

– We propose methods beyond the restart technique and show, that in some
cases they may have even better estimates of the convergence rate compared
to methods, based on the restart technique. Moreover, the required number
of iterations of such algorithms does not exceed N =

⌈
L+µ
µ log2

R2
0

ε

⌉
.

– We present some numerical experiments, which demonstrate the effectiveness
of the proposed methods.

We start with some auxiliaries. Let E be a finite-dimensional vector space
and E∗ be its dual. Let us choose some norm ‖·‖ on E. Define the dual norm
‖·‖∗ as follows

‖φ‖∗= max
‖x‖61

{〈φ, x〉}, (8)

where 〈φ, x〉 denotes the value of the linear function φ ∈ E∗ at the point x ∈ E.
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Let us choose some prox-function d(x), which is continuously differentiable
and convex on E, and define the corresponding Bregman divergence as follows

V (y, x) = Vd(y, x) = d(y)− d(x)− 〈∇d(x), y − x〉, ∀x, y ∈ E. (9)

The Bregman divergence can be understood as some generalization of the dis-
tance in the considered set.

1 Towards Adaptive Accelerated Rates for Saddle Point
Problems with Generalized Smoothness Condition

Let Qx ⊂ Rn and Qy ⊂ Rm be nonempty, convex and compact sets. Consider
the following saddle point problem

min
x∈Qx

max
y∈Qy

{f(x, y) + h(x)− g(x)}, (10)

where f(x, y) : Qx×Qy → R is convex function for fixed y ∈ Qy and concave for
fixed x ∈ Qx, functions h(x) and g(y) are convex on Qx and Qy, respectively,
and for each x, x′ ∈ Qx, y, y′ ∈ Qy, we have

‖∇h(x)−∇h(x′)‖∗6 Lx‖x− x′‖, ‖∇g(y)−∇g(y′)‖∗6 Ly‖y − y′‖,

for some Lx > 0, Ly > 0.

Remark 1. If f(x, y) : Qx×Qy → R is strongly convex function for fixed y ∈ Qy
and strongly concave for fixed x ∈ Qx, we can consider the problem (10) with
h(x) = ‖x‖2

2 and g(y) = ‖y‖2
2 .

Let us consider the following setting of the problem (10). Suppose, for any
x, x′ ∈ Qx, y, y′ ∈ Qy, Lxx > 0, Lyy > 0, Lxy > 0, and for some ν ∈ [0, 1], the
following inequalities hold

‖∇xf(x, y)−∇xf(x′, y′)‖∗6 Lxx‖x− x′‖ν+Lxy‖y − y′‖ν , (11)

‖∇yf(x, y)−∇yf(x′, y′)‖∗6 Lxy‖x− x′‖ν+Lyy‖y − y′‖ν . (12)

Let ωx, ωy be some 1-strongly convex function w.r.t. ‖·‖Qx , ‖·‖Qy respectively,
α : Q∗x → R be the convex conjugate of ‖x‖

2

2 − µxωx, and β : Qy
∗ → R be the

convex conjugate of ‖y‖
2

2 −µyωy. Then we can consider the following saddle point
problem

min
x∈Qx,
b∈Q∗y

max
y∈Qy,
a∈Q∗x

{
〈a, x〉+ 〈b, y〉+ µxωx(x)− µyωy(y) + f(x, y)− α(a) + β(b)

}
. (13)

It is shown [18], that if (x∗, y∗, a∗, b∗) is the saddle point to (13), then (x∗, y∗)
is the saddle point to (10). Also, α is 1

Lx
-strongly convex in ‖·‖Qx,∗, and β is

1
Ly

-strongly convex in ‖·‖Qy,∗ [18].
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Lemma 1. Define the following operator ((x, y) ∈ Qx ×Qy := X)

g(x, y, a, b) =
(
a+ µx∇ωx(x)+∇xf(x, y),−b+ µy∇ωy(y)−∇yf(x, y),

− x+∇α(a), y +∇β(b)
)
,

where f satisfies (11)-(12). Consider the following prox-function

d(x, y, a, b) = µxωx(x) + µyωy(y) + α(a) + β(b),

and the corresponding Bregman divergence, defined according to (9). Then g is
1-relatively strongly monotone, i.e.

〈g(y)− g(x), y − x〉 > V (y, x) + V (x, y), (14)

and generalized relatively smooth operator, i.e.

〈g(y)− g(z), y − x〉 6 LV (y, z) + LV (x, y) + δ, (15)

for some δ > 0, with

L = L̃(δ) =

(
2

δ

) 1−ν
1+ν

L 2
1+ν
xx

µx
+

L
2

1+ν
xy√
µxµy

+
L

2
1+ν
yy

µy

 . (16)

Proof. The proof is given in arXiv preprint [1].

Hence, considered variational inequalities with relatively strongly monotone
and generalized relatively smooth operators allow one to obtain first-order method
complexity estimates for the corresponding class of strongly convex-convex sad-
dle point problems, which are similar to the accelerated methods [18]. Moreover,
using the artificial inaccuracy, Lemma 1 extends this approach to saddle point
problems with generalized smoothness conditions [31,32].

However, extending the class of problems, one can potentially encounter the
problem of a large value of L̃(δ). On the other hand, even while considering the
smooth case for saddle point problems, it may be difficult to estimate all the 5
parameters µx, µy, Lxx, Lxy and Lyy. Motivated by this and starting from the
methodology of Y. E. Nesterov’s works [13,24,29], we propose methods allowing
the adaptively selection of the corresponding values of these parameters.

2 Adaptive Restarted Mirror Prox for Variational
Inequalities with Relative Strongly Monotone
Operators

Recently [32], there was proposed an adaptive universal algorithm (listed as
Algorithm 1, below), which can automatically adjust to the smoothness level of
the operator g.
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Algorithm 1 Universal Mirror Prox for Variational Inequalities [32].
Require: ε > 0, δ > 0, x0 ∈ X, initial guess L0 > 0, prox-setup: d(x), V (x, z).
1: Set k = 0, z0 = arg minu∈X d(u).
2: repeat
3: Find the smaller ik > 0, such that

〈g(zk), zk+1 − zk〉 6 〈g(wk), zk+1 − wk〉+ 〈g(zk), wk − zk〉+
+ Lk+1(V (wk, zk) + V (zk+1, wk)) + δ,

where Lk+1 = 2ik−1Lk, and

wk = arg min
x∈X
{〈g(zk), x− zk〉+ Lk+1V (x, zk)},

zk+1 = arg min
x∈X
{〈g(wk), x− wk〉+ Lk+1V (x, zk)}.

4: until SN :=
N−1∑
k=0

1
Lk+1

> maxx∈X V (x,x0)

ε
.

Ensure: zN .

Theorem 1 ([32]). Let g be a monotone operator, zN be the output of Algo-
rithm 1after N iterations. Then the following inequality holds

〈g(x∗), zN − x∗〉 6 −
1

SN

N−1∑
k=0

〈g(wk), x∗ − wk〉
Lk+1

6
2LV (x∗, z0)

N
. (17)

Moreover, the total number of iterations does not exceed

N =

⌈
2L

ε
·max
x∈X

V (x0, x)

⌉
. (18)

Lemma 2. Let g be a relatively strongly monotone operator. For Algorithm 1,
the following δ-decreasing of Bregman divergence takes place

V (x∗, zN ) 6 V (x∗, z0) + δSN . (19)

Proof. The proof is given in arXiv preprint [1].

The following Algorithm 2 provides the possibility of the acceleration of the
proposed Algorithm 1 for solving variational inequality with relatively strongly
monotone operator.

Theorem 2. Let g be a generalized relatively smooth (15) and µ-relatively strongly
monotone operator. Then for the output point xp of the Algorithm 2, it will be
hold: V (x∗, xp) 6 ε+ 2ΩLδ

µ2 . Moreover, the total number of iterations of Algorithm
2 does not exceed

N =

⌈
2LΩ

µ
· log2

R2
0

ε

⌉
. (20)
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Algorithm 2 Restarted version of Algorithm 1.

Require: ε > 0, µ > 0, Ω : d(x) 6 Ω
2
∀x ∈ X : ‖x‖6 1; x0, R0 : V (x∗, x0) 6 R2

0.

1: p = 0, d0(x) = R2
0d
(
x−x0
R0

)
.

2: repeat
3: xp+1 — output of Algorithm 1 with prox function dp(·) and stopping criterion

SN :=
∑N−1
i=0 L−1

i+1 > Ω
µ
.

4: R2
p+1 =

ΩR2
0

2(p+1)µSNp
.

5: dp+1(x)← R2
p+1d

(
x−xp+1

Rp+1

)
.

6: p = p+ 1.
7: until p > log2

(
2R2

0
ε

)
.

Ensure: xp.

Proof. The proof is given in arXiv preprint [1].

Remark 2. As shown above, Algorithm 2 needs no more thanN =
⌈

2LΩ
µ · log2

R2
0

ε

⌉
iterations to provide a solution of the problem (10), L is defined according to
(16), while the technique, described in [34] has the following worse complexity
estimate

inf
ν∈[0,1]

⌈(
Lν
µ

) 2
1+ν

· 2
2

1+ν Ω

ε
1−ν
1+ν

· log2

2R2
0

ε

⌉
, (21)

where Lν = L̃
(
L̃
2ε

(1−ν)(2−ν)
2−ν

) (1−ν)(1+ν)
2−ν

, L̃ =

(
Lxy

(
2Lxy
µy

) ν
2−ν

+ LxxD
ν−ν2
2−ν

)
,

and D is the diameter of the domain of f(x, ·).

Remark 3. The obtained estimate

N =

⌈
2Ω

(
Lxx
µx

+
Lxy√
µxµy

+
Lyy
µy

)
· log2

R2
0

ε

⌉
(22)

is optimal for saddle point problems (13) with ν = 1.

Remark 4. Note, that Ω may depend on the dimension of the considered space
[4].

3 First-order methods for relatively strongly monotone
variational inequalities beyond the restart technique

Basing on some recently proposed methods [7,18] for VIs with strongly relatively
monotone operators g : X → Rn, we consider algorithms (see Algorithms 3, 4
and 5) without using the restart technique. Similarly to the previous section we
consider the case of operators g with the generalized smoothness condition (15).
We improve the quality of the solution, compared to Algorithm 3 by reducing
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O
(
δ
µ2

)
to O

(
δ
µ

)
, which provides the better convergence rate in case of small

value of µ. It is also worth noting, that proposed algorithms do not require
knowledge of the parameter Ω.

Algorithm 3 Adaptive first-order method for variational inequalities with µ-
relatively strongly monotone operators without restarts.
Require: ε > 0, δ > 0, x0 ∈ X,L0 > 0, µ > 0, d(x), V (x, z).
1: Set z0 = arg minu∈X d(u).
2: for k > 0 do
3: Find the smallest integer ik > 0, such that

〈g(zk)− g(wk), zk+1 − wk〉 6 Lk+1 (V (wk, zk) + V (zk+1, wk)) + δ, (23)

where Lk+1 = 2ik−1Lk, and

wk = arg min
y∈X

{〈
1

Lk+1
g(zk), y

〉
+ V (y, zk)

}
, (24)

zk+1 = arg min
z∈X

{〈
1

Lk+1
g(wk), z

〉
+ V (z, zk) +

µ

Lk+1
V (z, wk)

}
. (25)

4: end for
Ensure: zk.

Theorem 3. Let g be a µ-relatively strongly monotone operator, and z∗ be the
exact solution of the variational inequality (1). Then for Algorithm 3, the fol-
lowing inequality holds

V (z∗, zk+1) 6
k+1∏
i=1

(
1 +

µ

Li

)−1

V (z∗, z0) +
δ

Lk+1 + µ
+

+

k∑
j=1

δ

Lj + µ

k+1∏
i=j+1

(
1 +

µ

Li

)−1

.

(26)

Proof. The proof is given in arXiv preprint [1].

Corollary 1. Let g be a µ-relatively strongly monotone operator, and z∗ be the
exact solution of the variational inequality (1). Then for Algorithm 4, the fol-
lowing inequalities hold

V (z∗, zk+1) 6
k∏
i=0

(
1 +

µ

Li+1

)−1

V (z∗, z0), (30)

V (z∗, zk+1) 6
(

1 +
µ

2L

)−(k+1)

V (z∗, z0). (31)
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Algorithm 4 Adaptive first-order method for variational inequalities with µ-
relatively strongly monotone and L-smooth operators.
Require: ε > 0, x0 ∈ X,L0 > 0, µ > 0, d(x), V (x, z).
1: Set z0 = arg minu∈X d(u).
2: for k > 0 do
3: Find smallest integer ik > 0, such that

〈g(zk)− g(wk), zk+1 − wk〉 6 Lk+1 (V (wk, zk) + V (zk+1, wk)) , (27)

where Lk+1 = 2ik−1Lk, and

wk = arg min
y∈X

{〈
1

Lk+1
g(zk), y

〉
+ V (y, zk)

}
, (28)

zk+1 = arg min
z∈X

{〈
1

Lk+1
g(wk), z

〉
+ V (z, zk) +

µ

Lk+1
V (z, wk)

}
. (29)

4: end for
Ensure: zk.

Remark 5. Due to (31), the number of iterations of Algorithm 4 for solving the
problem (1) does not exceed N =

⌈
2L+µ
µ log2

R2
0

ε

⌉
, which coincides with (20) up

to the multiplication by a constant in the case of L ∼ µ ∼ 1.

Remark 6. Taking into account (16), we find that the inequality (31) has the
following form

V (z∗, zk+1) =

(
2L̃

2L̃+ µ

)k+1

V (z∗, z0),

where L̃ is given in (16).

The main difference between Algorithms 3 and 4 and the next Algorithm 5
is a modified exit criterion, which leads to decreasing of the coefficient at δ.

Theorem 4. Let g be a µ-relatively strongly monotone operator, and z∗ be the
exact solution of the variational inequality (1). Then for Algorithm 5, we have

V (z∗, zk+1) 6
k+1∏
i=1

(
1 +

µ

Li

)−1

V (z∗, z0) + δ

1 +

k∑
j=1

k+1∏
i=j+1

(
1 +

µ

Li

)−1
 ,

(35)
and

V (z∗, zk+1) 6
(

1 +
µ

2L

)−(k+1)

V (z∗, z0) + δ

(
1 +

2L

µ

)
. (36)

Proof. The proof is given in arXiv preprint [1].
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Algorithm 5 The third adaptive first-order method for variational inequalities
with µ-relatively strongly monotone operators.
Require: ε > 0, δ > 0, x0 ∈ X,L0 > 0, µ > 0, d(x), V (x, z).
1: Set z0 = arg minu∈X d(u).
2: for k > 0 do
3: Find the smallest integer ik > 0, such that

〈g(zk)− g(wk), zk+1 − wk〉 6 Lk+1 (V (wk, zk) + V (zk+1, wk)) + Lk+1δ, (32)

where Lk+1 = 2ik−1Lk, and

wk = arg min
y∈X

{〈
1

Lk+1
g(zk), y

〉
+ V (y, zk)

}
, (33)

zk+1 = arg min
z∈X

{〈
1

Lk+1
g(wk), z

〉
+ V (z, zk) +

µ

Lk+1
V (z, wk)

}
. (34)

4: end for
Ensure: zk.

Remark 7. If we iterate the inequality

V (z∗, zk+1) 6

(
1 +

µ

Lk+1

)−1

V (z∗, zk) +
Lk+1δ

Lk+1 + µ
,

then for the Algorithm 5, the following inequality holds

V (z∗, zk+1) 6
k+1∏
i=1

(
1 +

µ

Li

)−1

V (z∗, z0)+
Lk+1δ

Lk+1 + µ
+

k∑
j=1

Ljδ

Lj + µ

k+1∏
i=j+1

(
1 +

µ

Li

)−1

.

Remark 8. For the selected type of saddle point problems (13) with (16) and
µ = 1, we find that the inequality

V (z∗, zk+1) 6
(

1 +
µ

2L

)−(k+1)

V (z∗, z0) + δ

(
1 +

2L

µ

)
,

has the following form

V (z∗, zk+1) 6

(
1 +

1

2L̃

)−(k+1)

V (z∗, z0) + L̃2
2

1−ν δ
2ν(1−ν)
(1+ν)2 + δ,

where L̃ is given in (16).

4 Numerical Experiments

4.1 Saddle point problem for the smallest covering ball problem
with functional constraints

In this subsection, we consider an example of the Lagrange saddle point problem
induced by a problem with geometrical nature, namely, an analogue of the well-
known smallest covering ball problem with functional constraints. This example
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Fig. 1: The results of Algorithms 3, 4 and 5, for case 1.

is equivalent to the following non-smooth convex optimization problem with
functional constraints

min
x∈X

{
ψ(x) := max

16k6s
‖x−Ak‖22; ϕp(x) 6 0, p = 1, ...,m

}
, (37)

where Ak ∈ Rn, k = 1, ..., s are given points and X is a convex compact set.
Functional constraints ϕp, for p = 1, ...,m, have the following form

ϕp(x) :=

n∑
i=1

αpix
2
i − 5, p = 1, ...,m. (38)

See [1], for more details about the setting of this problem and the setting
of its connected conducted experiments with it. The coefficients αpi in (38) are
drawn randomly from the following distributions.
Case 1: Pareto II or Lomax distribution with shape equalling 10.
Case 2: chi-square distribution, with a number of degrees of freedom, equals 3.

For case 1, the results of the work of Algorithms 3, 4, and 5 are presented in
the Fig. 1, below. These results demonstrate the theoretical estimate (26), (30)
and (35) for Algorithms 3, 4 and 5, respectively. Also, they demonstrate the
value of the objective function in (37) at the output point xN of the algorithm
after performing N iterations.

For case 2, we compare the work of Algorithms 2, 3, 4, and 5. The results
are presented in Fig. 2. They demonstrate the theoretical estimate (26), (30)
and (35) for Algorithms 3, 4 and 5, respectively. Also, in the comparison with
Algorithm 2, these results demonstrate the value of the objective function at the
output point xN of the algorithms after performing N iterations.

From Fig. 1, we can see that the proposed Algorithm 5 provides the best
quality solution with respect to the value of the objective function ψ at the
output point xN , although the theoretical estimate of this quality is not very
high. Therefore the efficiency of Algorithm 5 is obvious when we look at the
value of the objective function at the output point of compared algorithms.



12 S. Ablaev et al.

15 20 25 30 35 40 45
N

3.1463× 102

3.1463× 102

3.1463× 102

3.1463× 102

3.1463× 102

3.1463× 102

3.1463× 102

3.1463× 102

ψ
(x

N
)

(l
og

-s
ca

le
)

Algorithm 2

Algorithm 3

Algorithm 4

Algorithm 5

15 20 25 30 35 40 45
N

0.6

0.8

1.0

1.2

1.4

1.6

1.8

T
im

e
(s

ec
.)

Algorithm 2

Algorithm 3

Algorithm 4

Algorithm 5

15 20 25 30 35 40 45
N

10−14

10−12

10−10

10−8

10−6

10−4

10−2

T
he

or
et

ic
al

es
ti

m
at

e
(l

og
-s

ca
le

)

Algorithm 3

Algorithm 4

Algorithm 5

Fig. 2: The results of Algorithms 2, 3, 4 and 5, for case 2.

From Fig. 2, we can see that Algorithm 5 also gives the best estimate of
the quality of the solution. Also, Algorithms 3, 4 and 5 give the same objective
values at the output points, with approximately the same running time. In this
case, we see that Algorithm 4 works better than Algorithm 3 (it gives better
estimate of the quality of the solution), not as in case 1.

4.2 One Minty Variational Inequality

In this subsection we consider variational inequality with the following Lipschitz-
continuous and strongly monotone operators (See [1], for more details about the
setting of this problem and the setting of its connected conducted experiments
with it.).

The first operator is (see Example 5.2 in [19])

g : X ⊂ Rn → Rn, g(x) = x. (39)

The second operator is

g : X ⊂ Rn → Rn, g(x1, . . . , xn) =
(
x1, 2

2x2, 3
2x3, . . . , n

2xn
)
. (40)

This operator is L-Lipschitz continuous with L = n2 and µ-strongly monotone
with µ = 1. The condition number for this operator is κ = L/µ= n2, therefore
this operator will be ill-conditioned when n is relatively big.

For the experiments with operator (39), the results are presented in Fig. 3
and 4, which illustrate the norm ‖xout − x∗‖2, and the running time in seconds
as a function of iterations, where xout is the output of each algorithm.

In Fig. 3, we can not see the graphics of the Algorithms 3 and 5, that indicate
the distance ‖xout − x∗‖2, because by these algorithms this distance is equal to
zero for all considered number of iterations.

From the conducted experiments (for operator (39)), we can see that the
shape of the feasible set very much affects the progress of the work of the pro-
posed algorithms. We note that when we increase r (the radius of the ballX), the
corresponding running time of the compared algorithms is also increased. Also,
from Fig. 3 and 4, we can see that the proposed Algorithms 3 and 5, for any value
of the radius r, are the best, where they give the solution of the problem under
consideration with very high quality and at the same (approximately) running
time. Also, we can see that Algorithm 4 always works better than Algorithm 2.
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Fig. 3: The results of Algorithms 2, 4, 3 and 5, for operator (39), in the set X = {x ∈
Rn, ‖x‖26 r} with different radii r and n = 106, ε ∈ {10−3i, i = 1, 2, . . . , 8}, δ = 0.01.
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Fig. 4: The results of Algorithms 2, 4, 3 and 5, for operator (39), in the set X = {x ∈
Rn, ‖x‖26 r} with different radii r and n = 106, ε ∈ {10−3i, i = 1, 2, . . . , 8}, δ = 0.01.

Now, for the experiments with operator (40), the results are presented in
Fig. 5, which illustrates the norm ‖xout − x∗‖2, the running time in seconds as
a function of iterations, and the theoretical estimates (19), (26) and (35) of the
quality of the solution, for Algorithms 1, 3 and 5, respectively.
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Fig. 5: The results of Algorithms 1, 3 and 5, for operator (40).

From Fig. 5, we can see that Algorithm 5 is the worst. Algorithm 1, with
respect to the distance ‖xout − x∗‖2, gives results better than Algorithms 3.
Also, the theoretical estimate of the quality of the solution by Algorithm 1 is
approximately the same as by Algorithm 3. The difference between the running
times of Algorithms 1 and 3 is not big. Note that, Algorithm 1 is applicable to
a wider type of problem and can work better than Algorithms 3, 4 and 5 with
small µ. At the same time for variational inequalities with strongly monotone
operators, it can be restarted in such a way that Algorithm 2 will have similar
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convergence rate estimates. Thus, Algorithm 2 will be the best for the problems
with an ill-conditioned operator.

Conclusion

In this paper, we study adaptive first-order methods for variational inequalities
from the class of relatively strongly monotone operators recently introduced in
[33]. Our research is motivated, in particular, by the recently proposed tech-
nique [7,18] for strongly convex-concave saddle point problems, which allows
one to obtain the complexity estimates of the accelerated methods. First of all,
the paper deals with the issue of adaptive tuning of the method to the global
smoothness parameters of the saddle point problem. Moreover, an essential fea-
ture is the consideration of operators with a generalized condition of relative L-
Lipschitz property and the corresponding generalizations of smoothness for the
class of saddle point problems under consideration. Based on the methods from
[7,18], we proposed algorithms for solving variational inequalities with relatively
strongly monotone operators and obtained estimates of their convergence We
also presented some numerical experiments, which demonstrate the effectiveness
of the proposed methods. We considered an example of the convex optimization
problem with functional constraints, and an example of the Minty variational
inequality. The conducted experiments showed that the proposed Algorithms 3,
4 and 5 without using the technique of restarts work better than algorithm with
restarts (Algorithm 2) and vice versa for an example of the variational inequality
with an ill-conditioned operator.
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