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Abstract. In this paper we consider two types of problems which have
some similarity in their structure, namely, min-min problems and min-
max saddle-point problems. Our approach is based on considering the
outer minimization problem as a minimization problem with inexact or-
acle. This inexact oracle is calculated via inexact solution of the inner
problem, which is either a minimization or a maximization problem. Our
main assumptions are that the problem is smooth and the available ora-
cle is mixed: it is only possible to evaluate the gradient w.r.t. the outer
block of variables which corresponds to the outer minimization problem,
whereas for the inner problem only zeroth-order oracle is available. To
solve the inner problem we use accelerated gradient-free method with
zeroth-order oracle. To solve the outer problem we use either inexact
variant of the Vaydya’s cutting-plane method or a variant of accelerated
gradient method. As a result we propose a framework which leads to non-
asymptotic complexity bounds for both min-min and min-max problems.
Moreover, we estimate separately the number of first- and zeroth-order
oracle calls which are sufficient to reach any desired accuracy.

Keywords: First-order methods · Zeroth-order methods · Cutting-plane
methods · Saddle-point problems.

1 Introduction

In this paper, we consider smooth optimization problems in which the decision
variable is decomposed into two blocks with minimization w.r.t. one block, which
we call the outer block, and two types of operations w.r.t. the second block,
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which we call the inner block: minimization or maximization. In other words, we
consider smooth min-min problems and min-max problems. The main difference
of our setting with existing in the literature is that we assume that it is possible
to evaluate the gradient w.r.t. the outer block of the variables, i.e. first-order
oracle, and only function values, i.e. zeroth-order oracle, when we deal with the
inner block of variables. Thus, we operate with mixed type of oracle: first-order
in one block of variables and zeroth-order in the second block of variables.

Our motivation, firstly, comes from min-max saddle-point problems, which
have recently became of an increased interest in machine learning community in
application to training Generative Adversarial Networks [11], and other adver-
sarial models [17], as well as to robust reinforcement learning [23]. The standard
process is to simultaneously train neural network, find adversarial examples and
learn the network to distinguish the true examples from the artificially generated.
In the training process the gradient is available through the backpropagation,
whereas for the generating adversarial examples the network is available as a
black box and only zeroth-order oracle is available. Another close application
area is Adversarial Attacks [12,29] on neural networks, in particular the Black-
Box Adversarial Attacks [18]. Here the goal is for a trained network to find a
perturbation of the data in such a way that the network outputs wrong predic-
tion. Then the training is repeated to make the network robust to such attacks.
Since the attacking model does not have access to the architecture of the main
network, but only to the input and output of the network, the only available
oracle for the attacker is the zeroth-order oracle for the loss function. The moti-
vation for min-min problems comes from simulation optimization [8,27], where
some parts of the optimized system can be given as a black box with unavail-
able or computationally expensive gradients, and other parts of the objective are
differentiable.

Separately zeroth-order [5] and first-order [21] are very well developed areas
of modern numerical optimization. There are also plenty of works on first-order
[14,20,19,3] and zeroth-order methods [32,16,2,26] for saddle-point problems. Our
main idea and contribution in this paper is to consider mixed oracles, which
seems to be an underdeveloped area of optimization and saddle-point problems.
In [26] the authors consider methods with mixed oracle, but, unlike this work,
only in the context of saddle-point problems and without acceleration techniques.

Notably, in this paper we develop a generic approach which is suitable for
both types of problems: min-min and min-max, and is based on the same idea
for both problems: we consider the minimization problem w.r.t. the outer group
of variables as a minimization problem with inexact oracle. This inexact oracle is
evaluated via inexact solution of the inner problem, which is either a minimiza-
tion or a maximization problem. We carefully estimate with what accuracy one
needs to solve the inner problem to be able to solve the outer problem with the
desired accuracy. Moreover, we have to account for the random nature of the so-
lution to the inner problem since we use randomized gradient-free methods with
zeroth-order oracle to solve the inner problem. In our approach we consider two
settings for the outer problem. If the dimension of the outer problem is small,
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we use Vaydya’s cutting-plane method [31,30], for which we extend the analysis
to the case of approximate subgradients. The drawback of this method is that
it scales quite badly with the dimension. Thus, if the dimension of the outer
problem is large, we exploit accelerated gradient method, for which we develop
an analysis in the case when an inexact oracle is available only with some proba-
bility, which may be of independent interest. Our approach based on inner-outer
loops allows also to separate complexities, i.e. the number of calls to each of the
oracles: first-order oracle for the outer block of variables and zeroth-order oracle
for the inner block of variables.

The rest of the paper is organized as follows. First we consider min-min
problems in two settings: small and large dimension of the outer problem. In
the first case we develop an inexact variant of the Vaydya’s method use it in
the outer loop in a combination with accelerated random gradient-free method
in the inner loop. In the second case, we apply accelerated gradient method in
the outer loop combined with the same method in the inner loop. After that
we consider saddle-point min-max problems again in two settings. When the
dimension of the outer problem is small, we use the same scheme with inexact
Vaydya’s method and accelerated random gradient-free method. The situation
is more complicated when the dimension of the outer problem is large. In this
case we use a three-loop structure with the Catalyst acceleration scheme [15]
combined with accelerated gradient method with inexact oracle and accelerated
random gradient-free method.

Table 1. Main results

Oracle Complexity

1-st order 0-th order

Min

Min

Small
Scale

Õ (nx) Õ
(
nxny

√
Lyy

µy

)

Min

Max

Small
Scale

Õ (nx) Õ
(
nxny

√
Lyy

µy

)

Large
Scale

Õ

(√
Lxx

µx
+

2L2
xy

µxµy

)
Õ

(
ny

√
LxxLyy

µxµy
+

2L2
xy

µxµy

)

2 Solving Min-Min Problems

Consider the problem
min
x∈X

min
y∈R

ny
f(x, y), (1)

where X ⊆ R
nx is a closed convex set, f(x, y) is a convex function equipped

with a mixed oracle, i.e. we have access to a first-order oracle for the outer
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problem (minimization w.r.t. x) and a zeroth-order oracle for the inner problem
(minimization w.r.t. y). In the sections below we will describe the two approaches
to solving such problems together with additional assumptions they require.

The general idea of the approaches is as follows. Let us introduce the function

g(x) = min
y∈R

ny
f(x, y) (2)

and rewrite the initial problem (1) as

min
x∈X

g(x). (3)

Using an iterative method for the outer problem (3) requires solving the inner
problem (2) numerically on each iteration. An error of the solution of the inner
problem results in an inexact oracle for the outer problem.

2.1 Small dimension of the outer problem

The approach described in the present subsection requires the following assump-
tions about the problem (1):

1. X ⊂ R
nx is a compact convex set with nonempty interior;

2. nx is relatively small (up to a hundred);
3. f(x, y) is a continuous convex function which is also µy-strongly convex in
y;

4. for all x ∈ X the function f(x, ·) is Lyy-smooth, i.e.

‖∇yf(x, y)−∇yf(x, y
′)‖2 ≤ Lyy ‖y − y′‖2 ∀y, y′ ∈ R

ny .

5. for any x ∈ X the minimization problem (2) has solution y(x).

The algorithms used in the proposed approach and related convergence theorems
are given in the subsequent paragraphs. Our proposed approach goes as follows:

Approach 1. The outer problem (3) is solved via Vaidya’s cutting plane method
[30,31]. The inner problem (2) is solved via Accelerated Randomized Directional
Derivative method for strongly convex functions (ARDDsc) [7], see Algorithm 2.6

The complexity of approach 1 is given in the following theorem:

Theorem 1. Approach 1 arrives at ε-solution of the problem (3) after7 Õ(nx)

calls to the first-order oracle and Õ
(
nxny

√
Lyy

µy

)
calls to the zeroth-order oracle.

6 Here and below instead of ARDDsc we can use Accelerated coordinate descent meth-
ods [22,10] with replacing partial derivatives by finite-differences. In this case we
lost opportunity to play on the choice of the norm (that could save

√
ny-factor in

gradient-free oracle complexity estimate [7]), but, we gain a possibility to replace
the wort case Lyy to the average one (that could be ny-times smaller [22]). At the
end this could also save

√
ny-factor in gradient-free oracle complexity estimate [22].

7 Õ(·) = O(·) up to a small power of logarithmic factor
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Remark 1. As far as the arithmetic complexity of the iteration is concerned,
Vaidya’s cutting plane method involves inversions of nx×nx matrices, hence the
assumption that nx is relatively small.

The complexity bounds from theorem 1 are derived in the paragraphAnalysis
of the approach which follows the description of algorithms.

Vaidya’s cutting plane method Vaidya proposed a cutting plane method
[30,31] for solving problems of the form

min
x∈X

g(x), (4)

where X ⊆ R
n is a compact convex set with non-empty interior, and g : X → R

is a continuous convex function.
We will now introduce the notation and describe the algorithm. Let P =

{x ∈ R
n : Ax ≥ b} be the bounded full-dimensional polytope, where A ∈ R

m×n

and b ∈ R
m. The logarithmic barrier for P is defined as

L(x) := −
m∑

i=1

ln
(
a⊤i x− bi

)
,

where a⊤i is the ith row of A. The Hessian of L(x) is given by

H(x) =
m∑

i=1

aia
⊤
i(

a⊤i x− bi
)2 (5)

and is positive definite for all x in the interior of P . The volumetric barrier for
P is defined as

F (x) =
1

2
ln (detH(x)) ,

where detH(x) denotes the determinant of H(x). The point ω that minimizes
F (x) over P will be called the volumetric center of P . Let σi(x) be defined as

σi(x) =
a⊤i (H(x))

−1
ai(

a⊤i x− bi
)2 , 1 ≤ i ≤ m. (6)

Now, let R be a radius of some Euclidean ball BR that contains X . W.l.o.g
we will assume that BR is centered at the origin. The parameters of the method
η > 0 and γ > 0 are small constants such that η 6 10−4, and γ 6 10−3η. The
algorithm starts out with the simplex

P0 =



x ∈ R

n : xj > −R, j = 1, n,
n∑

j=1

xj 6 nR



 ⊇ BR ⊇ X . (7)

and produces a sequence of pairs (Ak, bk) ∈ R
mk×n ×R

mk , such that the corre-
sponding polytope Pk = {x ∈ R

n : Akx ≥ bk} always contains a solution of the
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problem (4). At the beginning of each iteration k we have an approximation zk
to the volumetric center of Pk (for more details on computing the approximation
see [31,30]). In particular, on the 0-th iteration we can compute the volumetric
center explicitly:

Proposition 1. The volumetric center for P0 is ω = ω1n, where ω := n−1
n+1R

and 1n denotes the vector (1, . . . , 1)⊤ ∈ R
n.

For k ≥ 0, the next polytope (Ak+1, bk+1) is defined by either adding or re-
moving a constraint to the current polytope, depending on the values {σi(zk)}mi=1

associated to Pk:

1. If for some i ∈ {1, . . . ,m} one has σi(zk) = min
1≤j≤m

σj(zk) < γ, then (Ak+1, bk+1)

is defined by removing the ith row from (Ak, bk).
2. Otherwise, i.e. if min

1≤j≤m
σj(zk) ≥ γ, the oracle is called with the current point

zk as input. If zk ∈ X , it returns a vector ck, such that −ck ∈ ∂g(zk), i.e.
−ck is a subgradient of g at zk. Otherwise, it returns a vector ck such that
c⊤k x ≥ c⊤k zk ∀x ∈ X . We choose βk ∈ R such that c⊤k zk ≥ βk and

c⊤k (H(zk))
−1 ck(

c⊤k zk − βk
)2 =

1

2

√
ηγ.

Then we define (Ak+1, bk+1) by adding the row given by
(
c⊤k , βk

)
to (Ak, bk).

After N iterations, the method returns a point xN := arg min
1≤k≤N

g(zk).

Now, let us introduce the concept of inexact subgradient.

Definition 1. The vector c ∈ R
n is called a δ-subgradient of a convex function

g at z ∈ dom f (we denote c ∈ ∂δg(z)), if

g(x) ≥ g(z) + c⊤(x− z)− δ ∀x ∈ dom f.

In fact, a δ-subgradient can be used in Vaidya’s method instead of the exact
subgradient. In this case, we will call the algorithm Vaidya’s method with δ-
subgradient. We will now present a theorem that justifies this claim.

Theorem 2. Let Bρ and BR be some Euclidean balls of radii ρ and R, re-
spectively, such that Bρ ⊆ X ⊆ BR, and let a number B > 0 be such that

|g(x) − g(x′)| ≤ B ∀x, x′ ∈ X . After N ≥ 2n
γ ln

(
n1.5R
γρ

)
+ 1

γ lnπ iterations

Vaidya’s method with δ-subgradient for the problem (4) returns a point xN such
that

g(xN )− g(x∗) ≤
Bn1.5R
γρ

exp

(
lnπ − γN

2n

)
+ δ, (8)

where γ > 0 is the parameter of the algorithm and x∗ is a solution of the problem
(4).
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Accelerated Randomized Directional Derivative method We refer to
the work [7]. For convenience, we present algorithms from this paper, taking
into account that the problem will be a classical optimization problem:

min
x∈Rnx

f(x). (9)

Gradient approximation:

gradf (x, τ, e) =
nx

τ
(f(x+ τe) − f(x)) e, (10)

where e ∈ RSnx

2 (1), i.e. be a random vector uniformly distributed on the surface
of the unit Euclidean sphere in R

nx .

Definition 2. Function d(x) : Rnx → R is called prox-function if d(x) is 1-
strongly convex w.r.t. ‖ · ‖p-norm and differentiable on R

nx function.

It is worth noting that in the case of p = 2, the prox-function d(x) looks like
this

d(x) =
1

2
‖x‖22

Definition 3. Let d(x) : Rnx → R is prox-function. For any two points x, x′ ∈
R

nx we define Bregman divergence Vx(x
′) associated with d(x) as follows:

Vx(x
′) = d(x′)− d(x) − 〈∇d(x), x′ − x〉.

It is worth noting that in the case of p = 2, the Bregman divergence Vx(x
′)

looks like this

Vx(x
′) =

1

2
‖x′ − x‖22

Let x∗ be fixed point and x be random vector such that Ex‖x−x∗‖2p ≤ R2
p, then

Exd

(
x− x∗

Rp

)
≤ Ωp

2
, (11)

where Ex denotes the expectation with respect to random vector x and Ωp is
defined as follows. We note that for p = 2 Ωp = 1
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Algorithm 1 Accelerated Randomized Directional Derivative (ARDD) method
[7]

Input: x0 - starting point, N - number of iterations, L - smoothness parameter, τ .
y0 := x0, w0 = x0

for k = 0, 1, 2, . . . , N − 1 do

Sample ek+1 ∈ RSnx
2 (1).

Set

tk :=
2

k + 2
, xk+1 := tkwk + (1− tk)yk

Calculate gradf (xk+1, τ, ek+1) using (10)
Compute

yk+1 := xk+1 −
1

2L
gradf (xk+1, τ, ek+1)

Set

αk :=
k + 1

96n2L

Compute

wk+1 := argmin
z∈Rnx

{
αk+1〈gradf (xk+1, τk, ek+1), w − wk〉+ Vzk(z)

}

end for

Output: yN or ȳN .

Algorithm 2 Accelerated Randomized Directional Derivative method for
strongly convex functions (ARDDsc) [7]

Input: x0 - starting point s.t. ‖x0 − x∗‖2p, N -number of iterations, µp -strong
convexity parameter.
Set

N0 =

⌈√
8aL2Ωp

µp

⌉

where a = 384n2ρn, ρn = min {q − 1, 16lnn− 8}n
2
q
−1.

for k = 0, 1, 2, . . . , N − 1 do

Set R2
k = R2

p2
−k

Set dk(x) = R2
kd
(

x−uk

Rk

)

Run ARDD 1 with starting point uk and prox-function dk(x) 2 for N0 steps.
Set uk+1 = yN0

, k = k + 1
end for

Output: uN

Theorem 3 (see [7]). Let p ∈ [1, 2] and q ∈ [2,+∞] be defined such that
1
p + 1

q = 1. Let function f in problem (9) be µp-strongly convex w.r.t. ‖.‖p and

L2-smooth w.r.t. ‖.‖2 and ARDDsc method 2 be applied to solve this problem.
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Then

Ef(uN )− min
x∈Rnx

f(x) ≤
µpR

2
p

2
2−N

Moreover, the oracle complexity to achieve ε-accuracy of the solution is

Õ

(
n

1
q
+ 1

2

√
L2Ωp

µp
log2

µpR
2
p

ε

)

Analysis of the approach 1 Fix a point x′ ∈ X . The following theorem gives
the recipe to obtaining the δ-subgradient c ∈ ∂δg(x

′) for the outer problem (3):

Theorem 4. Let δ̃ > 0 and ỹ ∈ R
ny satisfy f(x′, ỹ)−g(x′) ≤ δ̃, then ∂xf(x

′, ỹ) ∈
∂δg(x

′) with

δ = 2
(√

δ̃ + 2
√
D
)
√
Lyyδ̃

µy
, (12)

where D := max
x∈X

(f(x,0)− g(x)) < +∞.

The theorem 4 is based on the two following lemmas:

Lemma 1. Let h : Rny → R be an L-smooth convex function, and let the point
ỹ ∈ R

ny satisfy h(ỹ) − h(y∗) ≤ δ̃ for some ˜delta > 0, where y∗ ∈ Argmin
y∈R

ny

h(y).

Then

〈∇h(ỹ), ỹ − y〉 ≤ ‖ỹ − y‖2
√
2Lδ̃ ∀y ∈ R

ny .

Lemma 2 (see [9], p.12). Let ỹ ∈ R
ny satisfy

〈∇yf(x, ỹ), ỹ − y(x′)〉 ≤ δ ∀x′ ∈ X , (13)

then ∂xf(x, ỹ) ∈ ∂δg(x).

According to theorem 4, we need to solve the inner problem (2) with sufficient
accuracy to obtain the δ-subgradient. In fact, we can simplify the formula (12)
to

δ = 6

√
LyyDδ̃

µy
. (14)

Indeed, since ỹ is an δ̃-solution of the inner problem (2), we can assume that
δ̃ ≤ D ≡ maxx∈X (f(x,0)− g(x)). If this inequality doesn’t hold, we can always
take 0 as an approximate solution of (2).

Now, to derive the complexity of approach 1, we will use the theorem 2 and
put

Bn1.5R
γρ

exp

(
lnπ − γN

2n

)
=
ε

2
and δ =

ε

2
,
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i.e. Vaidya’s method will perform

Nx = O

(
nx ln

(
n1.5
x BR
ερ

))
,

steps (first-order oracle calls), and at each of them ARDDsc will perform

Ny = Õ

(
ny

√
Lyy

µy

)

iterations (see theorem 3). Thus, the number of zeroth-order oracle calls is

Nx ·Ny = Õ

(
nxny

√
Lyy

µy

)
,

which finishes the analysis of approach 1.

3 Solving Min-Max Saddle-Point Problems

Consider the problem
min
x∈X

max
y∈R

ny
f(x, y), (15)

where X ⊆ R
nx is a closed convex set, f(x, y) is a convex-concave function (i.e.

convex in x and concave in y) equipped with a mixed oracle, i.e. we have access
to a first-order oracle for the outer problem (minimization w.r.t. x) and a zeroth-
order oracle for the inner problem (maximization w.r.t. y). In the subsections
below we describe the two approaches for solving such problems together with
additional assumptions they require.

The general idea of the approaches is as follows. Let us introduce the function

g(x) = max
y∈R

ny
f(x, y) (16)

and rewrite the initial problem (15) as

min
x∈X

g(x). (17)

Using an iterative method for the outer problem (17) requires solving the inner
problem (16) numerically in each iteration. An error of the solution of the inner
problem results in an inexact oracle for the outer problem.

3.1 Small dimension of the outer problem

The approach described in the present section requires the following assumptions
about the problem (15):

1. X ⊂ R
nx is a compact convex set with nonempty interior;
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2. nx is relatively small (up to a hundred);
3. f(x, y) is a continuous function which is convex in x and µy-strongly concave

in y;
4. for all x ∈ X the function f(x, ·) is Lyy-smooth, i.e.

‖∇yf(x, y)−∇yf(x, y
′)‖2 ≤ Lyy ‖y − y′‖2 ∀y, y′ ∈ R

ny .

5. for any x ∈ X the maximization problem (16) has solution y(x).

The algorithms used in the approach and related convergence theorems are given
in the previous section. The approach goes as follows:

Approach 2. The outer problem (17) is solved via Vaidya’s cutting plane
method. The inner problem (2) is solved via ARDDsc, see Algorithm 2.

Complexity of the approach is given in the following theorem:

Theorem 5. Approach 2 arrives at ε-solution of the problem (17) after Õ(nx)

calls to the first-order oracle and Õ
(
nxny

√
Lyy

µy

)
calls to the zeroth-order oracle.

Remark 2. As far as the arithmetic complexity of the iteration is concerned,
Vaidya’s cutting plane method involves inversions of nx×nx matrices, hence the
assumption that nx is relatively small.

Complexity bounds from theorem 5 are derived in the following paragraph.

Analysis of the approach 2 Fix a point x′ ∈ X . The following lemma gives
the recipe to obtaining the δ-subgradient c ∈ ∂δg(x

′) for the outer problem (17):

Lemma 3 (see [24]). Let ỹ ∈ R
ny satisfy g (x′)−f (x′, ỹ) ≤ δ, then ∂xf (x

′, ỹ) ∈
∂δg (x

′).

According to lemma 3, we need to solve the inner problem (16) with accuracy
δ to obtain the δ-subgradient.

Now, to derive the complexity of approach 2, we will use the theorem 2 and
put

Bn1.5R
γρ

exp

(
lnπ − γN

2n

)
=
ε

2
and δ =

ε

2
,

i.e. Vaidya’s method will perform

Nx = O

(
nx ln

(
n1.5
x BR
ερ

))
,

steps (first-order oracle calls), and at each of them ARDDsc will perform

Ny = Õ

(
ny

√
Lyy

µy

)
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iterations (see theorem 3). Thus, the number of zeroth-order oracle calls is

Nx ·Ny = Õ

(
nxny

√
Lyy

µy

)
,

which finishes the analysis of approach 2.

3.2 Large dimension of the outer problem

For a detailed study of the convergence of the methods, we introduce some
assumptions about the objective function f(x, y).

Assumption 1. f(x, y) is convex-concave. It means that f(·, y) is convex for
all y and f(x, ·) is concave for all x.

Assumption 1(s). f(x, y) is strongly-convex-strongly-concave. It means
that f(·, y) is µx-strongly convex for all y and f(x, ·) is µy-strongly concave
for all x w.r.t. ‖ · ‖2, i.e. for all x1, x2 ∈ X and for all y1, y2 ∈ R

ny we have

f(x1, y2) ≥ f(x2, y2) + 〈∇xf(x2, y2), x1 − x2〉+
µx

2
‖x1 − x2‖22,

−f(x2, y1) ≥ −f(x2, y2)− 〈∇yf(x2, y2), y1 − y2〉+
µy

2
‖y1 − y2‖22. (18)

Assumption 2. f(x, y) is (Lxx, Lxy, Lyy)-smooth w.r.t ‖ · ‖2, i.e. for all
x, x′ ∈ X , y, y′ ∈ R

ny

‖∇xf(x, y)−∇xf(x
′, y)‖2 ≤ Lxx ‖x− x′‖2 ;

‖∇xf(x, y)−∇xf(x, y
′)‖2 ≤ Lxy ‖y − y′‖2

‖∇yf(x, y)−∇yf(x
′, y)‖2 ≤ Lxy ‖x− x′‖2 .

‖∇yf(x, y)−∇yf(x, y
′)‖2 ≤ Lyy ‖y − y′‖2 . (19)

As mentioned above, we have access to a first-order oracle ∇xf(x, y) for
the outer problem (minimization problem with variables x) and a zeroth-order
oracle f(x, y) for the inner problem (maximization problem with variables y).
Since we do not have access to the values of the gradient ∇yf(x, y), it is logical
to approximate it using finite differences using the value of the function f(x, y)
at two close points as follows

gradf (x, y, τ, e) = −n
τ
(f(x, y + τe)− f(x, y)) e, (20)

where e ∈ RSny

2 (1), i.e. is a random vector uniformly distributed on the surface
of the unit Euclidean sphere in R

ny . So we get a mixed oracle

G(x, y, τ, e) =

(
∇xf(x, y)

gradf (x, y, τ, e)

)
. (21)

Using the mixed oracle (21), we provide our approach for solving the initial
saddle-point problem (15). First, we can use the following trick with the help of
Sion’s theorem:

min
x∈X

max
y∈R

ny
f(x, y) = max

y∈R
ny

min
x∈X

f(x, y) = max
y∈R

ny
h(y), where h(y) = min

x∈X
f(x, y).
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For the new problem, we apply the Catalyst algorithm [15] to the outer maxi-
mization problem:

max
y∈R

ny

{
h(y) = min

x∈X
f(x, y)

}
. (22)

Algorithm 3 Catalyst [15]

1: Input: starting point x0, parameters H1 and α0, accuracy of solution to subprob-
lem ε̃, optimization method M.

2: Initialize
q =

µy

(µy +H1)

3: while the desired stopping criterion is not satisfied do

4: Find an approximate solution of the following problem using M:

yk ≈ argmax
y∈R

ny

{
ϕk(y) = h(y)− H1

2
‖y − zk−1‖22

}
, (23)

such that ϕ∗
k − ϕk(yk) ≤ ε̃

5: Compute αk ∈ (0, 1) from equation

α
2
k = (1− αi)α

2
k−1 + qαk

6: Compute

zk = yk + βk (yk − yk−1) , where βk =
αk−1(1− αk−1)

α2
k−1

+ αk

7: end while

8: Output: yfinal.

Now the question arises how to solve the auxiliary problem (23). This sub-
problem is equivalent to solving the following problem:

max
y∈R

ny

{
h(y)− H1

2
‖y − zk−1‖22

}
= max

y∈R
ny

{
min
x∈X

{f(x, y)} − H1

2
‖y − zk−1‖22

}
,

for which we again use the Sion’s theorem and rewrite equivalently the problem
as:

max
y∈R

ny
min
x∈X

{
f(x, y)− H1

2
‖y − zk−1‖22

}
= min

x∈X
max
y∈R

ny

{
f(x, y)− H1

2
‖y − zk−1‖22

}
.

For convenience, we denote

ψ(x, y) = f(x, y)− H1

2
‖y − zk‖22. (24)
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Thus, to solve the auxiliary problem (23), we first solve the following saddle-point
problem

min
x∈X

max
y∈R

ny
ψ(x, y) = min

x∈X
max
y∈R

ny

{
f(x, y)− H1

2
‖y − zk−1‖22

}
. (25)

This saddle-point problem (25) can be considered as an optimization problem
for a certain function. Indeed, let us introduce a function

ξ(x) = max
y∈R

ny
ψ(x, y), (26)

and rewrite the initial problem (25) as follows:

min
x∈X

ξ(x). (27)

To solve problem (25), we solve the outer minimization problem with respect
to the variable x by the fast adaptive gradient method with inexact oracle. In
each iteration of this method, to find the inexact first-order oracle for the outer
problem, we solve the inner problem (26). Since for this inner problem we have
access only to the zeroth-order oracle, we use accelerated gradient-free method
ARDDsc [7]. Our approach is summarized as follows.

Approach 3. The outer problem (17) is solved via Catalyst Algorithm 3. The
subproblem (23) is solved as saddle-point problem (25). The outer problem (27)
is solved via Fast Adaptive Gradient Method (Algorithm 4). At each iteration
of Algorithm 4 the inner problem (26) is solved via ARDDsc, see Algorithm 2,
for case p = 2 (that is, prox-function d(x) = 1

2‖x‖22, see Definition 2, Bregman
divergence Vx(x

′) = 1
2‖x′ − x‖22, see Definition 3, and Ωp = Ω2 = 2).

Analysis of fast adaptive gradient method with (δ, σ, L, µ)-oracle (Al-
gorithm 4) For our analysis, due to the fact that Algorithm 2 is randomized,
we need not just a fast gradient method for solving the outer problem (27), but a
fast adaptive gradient method for (δ, σ, L, µ)-oracle. This is the extension of the
fast adaptive gradient method from [28]. To understand this problem in depth
and in detail, we need to carefully consider the concept of (δ, σ, L, µ)- oracle and
perform a deep and thorough convergence analysis of the fast gradient method
using such a seemingly unusual oracle. To that end, we consider the following
general minimization problem:

min
x∈X

f(x). (28)

Definition 4 ((δ, σ, L, µ)-oracle). Let function f be convex on convex set X .
We say that it is equipped with a first-order (δ, σ, L, µ)-oracle if, for any x′ ∈ X ,
we can compute a pair (fδ,L,µ(x

′), gδ,L,µ(x
′)) ∈ R×R

nx such that with probability
at least 1− σ

µ

2
‖x′ − x‖2 ≤ f(x)− (fδ,L,µ(x

′) + 〈gδ,L,µ(x
′), x− x′〉) ≤ L

2
‖x− x′‖2 + δ. (29)
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Definition 5 ((ε, σ)-solution). Let ε > 0 be the target accuracy of the solution
and σ ∈ (0, 1) be the target confidence level. We say that a random point x̂ ∈ X
is (ε, σ)-solution to problem (28) if

P

{
f(x̂)−min

x∈X
f(x) ≤ ε

}
≥ 1− σ. (30)

If σ = 0, we say that x̂ ∈ X is an ε-solution to problem (28).

Algorithm 4 Fast adaptive gradient method with (δ, σ, L, µ)-oracle [28]

1: Input: starting point x0, L0 > 0, µ ≥ 0, sequence {δ}k≥0.
2: y0 := x0, u0 := x0, α0 := 0, A0 := α0

3: for k ≥ 0 do

4: Find the smallest integer ik ≥ 0 such that

fδk,L,µ(xk+1) ≤ fδk,L,µ(yk+1)+〈gδ,L,µ(yk+1), xk+1 − yk+1〉+
Lk+1

2
‖xk+1−yk+1‖22+δk,

where Lk+1 = 2ik−1Lk.
5: Compute αk+1 such that αk+1 is the largest root of

Ak+1(1 + Akµ) = Lk+1α
2
k+1, where Ak+1 := Ak + αk+1

6: yk+1 =
αk+1uk+Akxk

Ak+1

φk+1(x) = αk+1 〈gδ,L,µ(yk+1), x− yk+1〉+
(1 + Akµ)

2
‖x−uk‖22+

αk+1µ

2
‖x−yk+1‖22

7: uk+1 := argmin
x∈X

φk+1(x)

8: xk+1 =
αk+1uk+1+Akxk

Ak+1

9: end for

10: Output: xk+1.

Note that the problem argmin
x∈X

φk+1(x) is solved exactly in each iteration.

Theorem 6. Let function f be convex on convex set X and be equipped with a
first-order (δ, σ, L, µ)-oracle. Then, after N iterations of Algorithm 4 applied to
problem (28), we have that with probability at least (1−Nσ):

f(xN )− f(x∗) ≤ 2L exp

(
−N − 1

2

√
µ

L

)
R2

2 +
2
∑N−1

k=0 Ak+1δk
AN

, (31)

where R2 is such that 1
2‖x0 − x∗‖22 ≤ R2

2 and x0 is the starting point.
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Corollary 1. Let function f be convex on convex set X and be equipped with
a first-order (δ, σ

N , L, µ)-oracle. If the sequence {δ}k≥0 is bounded by δ, we have
with probability at least (1− σ):

f(xN )− f(x∗) ≤ 2L exp

(
−N − 1

2

√
µ

L

)
R2

2 +

(
1 +

√
L

µ

)
δ (32)

where R2 is such that 1
2‖x0 − x∗‖22 ≤ R2

2 and x0 is the starting point.

Proof. To prove this statement, we give an auxiliary lemma

Lemma 1 (see [6]). The sequence {Ak}k≤0 satisfies

∑k
i=0Ai

Ak
≤ 1 +

√
L

µ
(33)

We get the result of the Corollary immediately using (31) and Lemma 1.

Analysis of Approach 3 For further analysis, we present the main lemma of
this subsection

Lemma 4 (see [1]). We denote

y∗f (x) = argmax
y∈R

ny

f(x, y), x∗f (y) = argmin
x∈X

f(x, y).

Under assumption 1(s), 2 we have

– Function x∗f (y) is
Lxy

µx
-Lipschitz continuous w.r.t. the norm ‖ · ‖2.

– Function y∗f (x) is
Lxy

µy
-Lipschitz continuous w.r.t. the norm ‖ · ‖2

– Function g(x) (see (16)) is Lg :=
(
Lxx +

2L2
xy

µy

)
-smooth w.r.t. the norm

‖ · ‖2.
– Let ỹδ(x) be a (δ, σ)-solution to problem max

y∈R
ny
f(x, y). Then, for any x′, x ∈

X , with probability at least 1− σ we have:

µx

2
‖x−x′‖22 ≤ g(x′)−f(x, ỹδ(x))−〈∇xf(x, ỹδ(x)), x

′ − x〉 ≤ 2Lg

2
‖x′−x‖22+2δ.

– We define
g(x) = max

y∈R
ny
f(x, y), h(y) = min

x∈X
f(x, y)

Let x̂ be (εx, σx)-solution of problem min
x∈X

g(x), let ỹεy (x̂) be (εy, σy)-solution

of problem max
y∈R

ny
f(x̂, y). Then ỹεy (x̂) is (ε̃, 1− σx − σy)-solution to problem

(15), where

ε̃ =

(
Lyy

µy
+

2L2
xy

µxµy

)
εy +

(
L2
xyLyy

µxµ2
y

+
2L4

xy

µ2
xµ

2
y

)
εx.
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Now we are ready to present the main result of this section

Theorem 7. Let ε > 0 be the target accuracy of the solution to the problem (15)
and σ ∈ (0, 1) be the target confidence level. Let the auxiliary problems (16), (17)
be solved with accuracies

εx = Õ



ε
(

L2
xyLyy

µx(µy + Lyy)2
+

2L4
xy

µ2
x(µy + Lyy)2

)−1


 ;

εy = Õ


ε
(

Lyy

µy + Lyy
+

2L2
xy

µx(µy + Lyy)

)−1(
Lxx

µx
+

2L2
xy

µx(µy + Lyy)

)−1/2



and confidence levels

σx = Õ

(
σ

√
µy

Lyy

)
;

σy = Õ


σ

(
LxxLyy

µxµy
+

2L2
xy

µxµy

)−1/2

 ,

that is, a (εx, σx)−solution to the problem (17) and a (εy, σy)−solution to the
problem (16) are found (see Definition 5). Then, under assumptions 1(s), 2, the
proposed Approach 3 guarantees to find an (ε, σ)-solution to the problem (15).
Moreover, the required number of calls to the first-order oracle ∇xf(x, y) and
the zeroth-order oracle f(x, y) satisfy the following bounds

Total Number of Calls for ∇xf(x, y) is Õ

(√
Lxx

µx
+

2L2
xy

µxµy

)
,

Total Number of Calls for f(x, y) is Õ

(
ny

√
LxxLyy

µxµy
+

2L2
xy

µxµy

)
.
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A Proofs for Section 2 (Solving Min-Min Problems)

Proposition 1. The volumetric center for P0 is ω = ω1n, where ω := n−1
n+1R

and 1n denotes the vector (1, . . . , 1)⊤ ∈ R
n.

Proof. P0 can be viewed as P0 = {x ∈ R
n : A0x ≥ b0}, where A0 ∈ R

(n+1)×n

and b0 ∈ R
n+1 are defined as

b0 = −R
[
1n

n

]
and A0 =




e⊤1
...
e⊤n
−1⊤

n


 (34)

It is known that the analytic center of simplex (i.e. minimizer of L(x)) is also
its volumetric center [25]. Note that L(x) is a convex function.

∇L(x) = −
n+1∑

i=1

ai

a⊤i x− bi
= −

n∑

i=1

ei
xi +R +

1n

nR−
∑n

j=1 xj

∇L(x̄) = 0 ⇐⇒ 1

nR−∑n
j=1 x̄j

=
1

x̄i +R , i = 1, n

x̄i =
n− 1

n+ 1
R, i = 1, n, and x̄ ∈ P0 ⇒ ω = x̄.

Theorem 2. Let Bρ and BR be some Euclidean balls of radii ρ and R, re-
spectively, such that Bρ ⊆ X ⊆ BR, and let a number B > 0 be such that

|g(x) − g(x′)| ≤ B ∀x, x′ ∈ X . After N ≥ 2n
γ ln

(
n1.5R
γρ

)
+ 1

γ lnπ iterations

Vaidya’s method with δ-subgradient for the problem (4) returns a point xN such
that

g(xN )− g(x∗) ≤
Bn1.5R
γρ

exp

(
lnπ − γN

2n

)
+ δ, (8)

where γ > 0 is the parameter of the algorithm and x∗ is a solution of the problem
(4).

Proof. The proof goes as follows. First, we consider the set X ε := {(1− ε)x∗ +
εx, x ∈ X} for some ε ∈ [0, 1]. Then, we calculate the number of iterations
N sufficient for the volume of the polytope PN to go below the volume of X ε.
Finally, we show that after N iterations the algorithm arrives at a (Bε + δ)-
suboptimal point.

Fix ε ∈ [0, 1] and consider the set X ε := {(1− ε)x∗ + εx, x ∈ X}. Note that
X ε ⊆ P0 and

volX ε = εn volX ≥ εn volBρ. (35)

The lower bound on the volume of n-ball [4] is

volBρ ≥ ρn√
π
(
n+ e

2 − 1
)
(
2πe

n

)n/2

. (36)
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We will now derive an upper bound on the volume of polytope PN at the begin-
ning of the N -th iteration. According to the Vaidya’s paper [30], the following
inequality holds:

ln (volPN ) ≤ n ln

(
2n

γ

)
− ρ0 − γ

2
N, (37)

where γ is the parameter of the algorithm and ρ0 denotes the minimum of the
volumetric barrier at the beginning of the 0-th iteration. To calculate it, we will
use proposition 1, which states that ω = ω1n, where ω := n−1

n+1R. Observe that

R− ω =
2

n+ 1
R, ω +R =

2n

n+ 1
R = n(R− ω). (38)

Let us calculate H(ω) and F (ω):

H(ω)
(5)
=

1

(ω +R)2
In +

1

(nR− nω)2
1n1

⊤
n

(38)
=

1

(ω +R)2
(
In + 1n1

⊤
n

)

detH(ω) =
1

(ω +R)
2n (1 + n) =

(n+ 1)2n+1

(2nR)2n
.

ρ0 = F (ω) =

(
n+

1

2

)
ln(n+ 1)− n ln(2nR) (39)

Using the formulas (37) and (39), we obtain

ln (volPN ) ≤ n ln

(
4n2R
γ(n+ 1)

)
− 1

2
ln(n+ 1)− γ

2
N. (40)

Putting together (35), (36) and (40), we will determine a sufficient number of
iterations to assure volPN < volX ε:

n ln

(
4n2R
γ(n+ 1)

)
− 1

2
ln(n+ 1)− γ

2
N < n ln

(√
2πe

n
ερ

)
− 1

2
ln
(
π
(
n+

e

2
− 1
))

(41)

γN > 2n ln

(
4n2.5R

γ(n+ 1)
√
2πeερ

)
+ ln

(
π
(
n+ e

2 − 1
)

n+ 1

)
. (42)

It is sufficient to do

N =
2n

γ
ln

(
n1.5R
γερ

)
+

1

γ
lnπ (43)

iterations. Since volPN < volX ε, there will be an iteration j ∈ {0, ..., N−1} and
a point xε ∈ X ε such that xε ∈ Pj and xε /∈ Pj+1. Thus, on the j-th iteration we
added a new constraint to the polytope. There exists a point x ∈ X such that
xε = (1− ε)x∗ + εx, therefore it follows from the convexity of g that

g(xε) 6 (1− ε)g(x∗) + εg(x) 6 (1 − ε)g(x∗) + ε ((g(x∗) +B) =

= g(x∗) +Bε. (44)
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We will now show that the following inequality holds for the query point zj at
the j-th iteration:

g(zj) < g(xε) + δ. (45)

First, note that zj belongs to X , otherwise we would cut out a part of Pj that
doesn’t intersect with X , which is a contradiction since xε ∈ Pj \ Pj+1 and
xε ∈ X . Recall that the constraint c⊤j x ≥ βj was added to the polytope on the

j-th iteration, where −cj ∈ ∂δg(zj) and βj ≤ c⊤j zj . According to the definition
of δ-subgradient,

g(x) ≥ g(zj)− c⊤j (x− zj)− δ ∀x ∈ X .

Therefore,

(Pj \ Pj+1) ∩ X ⊆ {x ∈ X : c⊤j (x− zj) < 0} ⊆ {x ∈ X : g(x) > g(zj)− δ},

which results in (45) since xε ∈ (Pj \Pj+1)∩X . Combining (43), (44) and (45),
we conclude the proof.

Theorem 4. Let δ̃ > 0 and ỹ ∈ R
ny satisfy f(x′, ỹ)−g(x′) ≤ δ̃, then ∂xf(x

′, ỹ) ∈
∂δg(x

′) with

δ = 2
(√

δ̃ + 2
√
D
)
√
Lyyδ̃

µy
, (12)

where D := max
x∈X

(f(x,0)− g(x)) < +∞.

Proof. Using Lemmas 1, 2 and triangle inequality, we get ∂xf(x
′, ỹ) ∈ ∂δg(x

′)
with

δ =

(
‖ỹ‖2 +max

x∈X
‖y(x)‖2

)√
2Lyyδ̃. (46)

Let us bound the two terms in parentheses. For any x ∈ X , it follows from the
strong convexity of f(x, ·) that

‖y′ − y(x)‖2 ≤
√

2(f(x, y′)− g(x))

µy
∀y′ ∈ R

ny . (47)

In particular, putting y′ = 0 leads to

‖y(x)‖2 ≤
√

2(f(x,0)− g(x))

µy
.

Observe that ∆(x) := f(x,0) − g(x) is a continuous function defined on the
compact set X . Therefore, it is bounded, i.e. ∆(x) ≤ D for some D < +∞.
Thus,

max
x∈X

‖y(x)‖2 ≤
√

2D

µy
. (48)
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Finally, let us bound ‖ỹ‖2 by again using triangle inequality, then inequalities
(47), (48) and f (x′, ỹ)− g (x′) ≤ δ̃:

‖ỹ‖2 ≤ ‖ỹ − y(x′)‖2 + ‖y(x′)‖2 ≤ ‖ỹ − y(x′)‖2 +
√

2D

µy
≤
√

2δ̃

µy
+

√
2D

µy
. (49)

The statement of the theorem immediately follows from (46), (48) and (49).

Lemma 1. Let h : Rny → R be an L-smooth convex function, and let the point
ỹ ∈ R

ny satisfy h(ỹ) − h(y∗) ≤ δ̃ for some ˜delta > 0, where y∗ ∈ Argmin
y∈R

ny

h(y).

Then

〈∇h(ỹ), ỹ − y〉 ≤ ‖ỹ − y‖2
√
2Lδ̃ ∀y ∈ R

ny .

Proof. Due to the Cauchy–Bunyakovsky–Schwarz inequality,

〈∇h(ỹ), ỹ − y〉 ≤ ‖∇h(ỹ)‖2 ‖ỹ − y‖2 (50)

Since h is L-smooth and convex,

h(ỹ) ≥ h(y∗) + 〈∇h(y∗), ỹ − y∗〉+
1

2L
‖∇h(y∗)−∇h(ỹ)‖22

Using ∇h(y∗) = 0, we obtain

‖∇h(ỹ)‖22 ≤ 2L (h(ỹ)− h(y∗)) . (51)

Combining (50) and (51), we conclude the proof.

Lemma 2 (see [9], p.12). Let ỹ ∈ R
ny satisfy

〈∇yf(x, ỹ), ỹ − y(x′)〉 ≤ δ ∀x′ ∈ X , (13)

then ∂xf(x, ỹ) ∈ ∂δg(x).

Proof. From convexity of f we get for any x′ ∈ X

f(x′, y(x′)) ≥ f(x, ỹ) + 〈∇xf(x, ỹ), x
′ − x〉+ 〈∇yf(x, ỹ), y(x

′)− ỹ〉

Using (13) and g(x′) = f(x′, y(x′)), we obtain

g(x′) ≥ f(x, ỹ) + 〈∇xf(x, ỹ), x
′ − x〉 − δ.

Note that g(x) ≤ f(x, ỹ), therefore,

g(x′) ≥ g(x) + 〈∇xf(x, ỹ), x
′ − x〉 − δ ∀x′ ∈ X .

Thus, by definition we have ∂xf(x, ỹ) ∈ ∂δg(x).
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B Proofs for Section 3 (Solving Min-Max Saddle-Point
Problems)

Theorem 6. Let function f be convex on convex set X and be equipped with a
first-order (δ, σ, L, µ)-oracle. Then, after N iterations of Algorithm 4 applied to
problem (28), we have that with probability at least (1−Nσ):

f(xN )− f(x∗) ≤ 2L exp

(
−N − 1

2

√
µ

L

)
R2

2 +
2
∑N−1

k=0 Ak+1δk
AN

, (31)

where R2 is such that 1
2‖x0 − x∗‖22 ≤ R2

2 and x0 is the starting point.

Proof. We almost completely repeat the proof of result from [28].

Lemma 2 (see [28]). Let φ(x) be convex function on the convex set X and

y = argmin
x∈X

{
φ(x) +

β

2
‖x− z‖22 +

γ

2
‖x− u‖22

}
,

where β ≥ 0, γ ≥ 0. Then

ψ(x)+
β

2
‖x−z‖22+

γ

2
‖x−u‖22 ≥ ψ(y)+

β

2
‖y−z‖22+

γ

2
‖y−u‖22+

γ + β

2
‖y−x‖22 (52)

Lemma 3 (see [28]). For all x ∈ X we have with probability with 1− σ

Ak+1f(xk+1)−Akf(xk) +
(1 +Ak+1µ)

2
‖x− uk+1‖22 −

(1 +Akµ)

2
‖x− uk‖22

≤ αk+1f(x) + 2δk+1Ak+1 (53)

Proof Using definition of (δ, σ, L, µ)-oracle (29), we have with probability
with 1 − σ inequalities f(x) − δ ≤ fδ,L,µ(x) ≤ f(x). Then with probability at
least 1− σ:

f(xk+1) ≤ fδk,L,µ(yk+1)+〈gδ,L,µ(yk+1), xk+1 − yk+1〉+
Lk+1

2
‖xk+1−yk+1‖22+2δk,
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Using definitions of sequences xk+1 and yk+1, we have with probability at least
1− σ:

f(xk+1) ≤ fδk,L,µ(yk+1) + 〈gδ,L,µ(yk+1), xk+1 − yk+1〉+
Lk+1

2
‖x′ − x‖22 + 2δk

= fδk,L,µ(yk+1) +

〈
gδ,L,µ(yk+1),

αk+1uk+1 +Akxk
Ak+1

− yk+1

〉

+
Lk+1

2

∥∥∥∥
αk+1uk+1 +Akxk

Ak+1
− αk+1uk +Akxk

Ak+1

∥∥∥∥
2

2

+ 2δk

=
Ak

Ak+1
(fδk,L,µ(yk+1) + 〈gδ,L,µ(yk+1), xk − yk+1〉)

+
αk+1

Ak+1
(fδk,L,µ(yk+1) + 〈gδ,L,µ(yk+1), uk+1 − yk+1〉) +

Lk+1α
2
k+1

2A2
k+1

‖uk+1 − uk‖22 + 2δk

=
Ak

Ak+1
(fδk,L,µ(yk+1) + 〈gδ,L,µ(yk+1), xk − yk+1〉)

+
αk+1

Ak+1

(
fδk,L,µ(yk+1) + 〈gδ,L,µ(yk+1), uk+1 − yk+1〉+

1 +Akµ

2αk+1
‖uk+1 − uk‖22

)
+ 2δk

≤ Ak

Ak+1
fδk,L,µ(xk)

+
αk+1

Ak+1

(
fδk,L,µ(yk+1) + 〈gδ,L,µ(yk+1), uk+1 − yk+1〉+

1 +Akµ

2αk+1
‖uk+1 − uk‖22

)
+ 2δk

Due to uk+1 is the solution to argmin
x∈X

φk+1(x), using (52) we have for any

x ∈ X with probability at least 1− σ:

αk+1 〈gδ,L,µ(yk+1), uk+1 − yk+1〉+
(1 +Akµ)

2
‖uk+1 − uk‖22

+
αk+1µ

2
‖uk+1 − yk+1‖22 +

(1 +Ak+1µ)

2
‖uk+1 − x‖22

≤ αk+1 〈gδ,L,µ(yk+1), x − yk+1〉+
(1 +Akµ)

2
‖x− uk‖22 +

αk+1µ

2
‖x− yk+1‖22

Then for all x ∈ X we have with probability at least 1− σ:

αk+1 〈gδ,L,µ(yk+1), uk+1 − yk+1〉+
(1 +Akµ)

2
‖uk+1 − uk‖22

≤ αk+1 〈gδ,L,µ(yk+1), x− yk+1〉+
(1 +Akµ)

2
‖x− uk‖22 −

(1 +Ak+1µ)

2
‖uk+1 − x‖22

+
αk+1µ

2
‖x− yk+1‖22

Then for all x ∈ X we have with probability at least 1− σ:

f(xk+1) ≤
Ak

Ak+1
f(xk) +

αk+1

Ak+1
f(x) + 2δk +

αk+1

Ak+1

(1 +Ak+1µ

2αk+1
‖uk+1 − x‖22 +

1 +Akµ

2αk+1
‖x− uk‖22

)

=
Ak

Ak+1
f(xk) +

αk+1

Ak+1
f(x) + 2δk +

1+Ak+1µ

2Ak+1
‖uk+1 − x‖22 +

1 +Akµ

2Ak+1
‖x− uk‖22
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Now we prove the statement of this theorem. First, we note that if we sum
the inequality (53) by k from 0 to N − 1, for any x ∈ X we get

ANf(xN )−ANf(x
∗) ≤

N−1∑

k=0

2δk+1Ak+1 −
1 +ANµ

2
‖x− uN‖22 +

1

2
‖x− u0‖22

Then using the resulting inequality above for any x ∈ X we get

P

{
ANf(xN ) − ANf(x

∗) >

N−1∑

k=0

2δk+1Ak+1 −
1 +ANµ

2
‖x− uN‖22 +

1

2
‖x− u0‖22

}

≤
N−1∑

k=0

P

{
Ak+1f(xk+1)−Akf(xk) +

(1 +Ak+1µ)

2
‖x− uk+1‖22

− (1 +Akµ)

2
‖x− uk‖22 ≤ αk+1f(x) + 2δk+1Ak+1

}
< Nσ

In this way, for any x ∈ X with probability at least (1−Nσ) we have

ANf(xN )−ANf(x
∗) ≤

N−1∑

k=0

2δk+1Ak+1 +
1

2
‖x− u0‖22

We finish proof with next inequality (see [28]):

AN ≥ 1

2L
exp

(
N − 1

2

√
µ

L

)

Lemma 4 (see [1]). We denote

y∗f (x) = argmax
y∈R

ny

f(x, y), x∗f (y) = argmin
x∈X

f(x, y).

Under assumption 1(s), 2 we have

– Function x∗f (y) is
Lxy

µx
-Lipschitz continuous w.r.t. the norm ‖ · ‖2.

– Function y∗f (x) is
Lxy

µy
-Lipschitz continuous w.r.t. the norm ‖ · ‖2

– Function g(x) (see (16)) is Lg :=
(
Lxx +

2L2
xy

µy

)
-smooth w.r.t. the norm

‖ · ‖2.
– Let ỹδ(x) be a (δ, σ)-solution to problem max

y∈R
ny
f(x, y). Then, for any x′, x ∈

X , with probability at least 1− σ we have:

µx

2
‖x−x′‖22 ≤ g(x′)−f(x, ỹδ(x))−〈∇xf(x, ỹδ(x)), x

′ − x〉 ≤ 2Lg

2
‖x′−x‖22+2δ.

– We define
g(x) = max

y∈R
ny
f(x, y), h(y) = min

x∈X
f(x, y)
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Let x̂ be (εx, σx)-solution of problem min
x∈X

g(x), let ỹεy (x̂) be (εy, σy)-solution

of problem max
y∈R

ny
f(x̂, y). Then ỹεy (x̂) is (ε̃, 1− σx − σy)-solution to problem

(15), where

ε̃ =

(
Lyy

µy
+

2L2
xy

µxµy

)
εy +

(
L2
xyLyy

µxµ2
y

+
2L4

xy

µ2
xµ

2
y

)
εx.

Proof. To justify the statement of the lemma, we give a more general statement.

Lemma 4 (see lemma 4 ). We denote

y∗f (x) = argmax
y∈R

ny

g(x, y); x∗f (y) = argmin
x∈X

g(x, y).

Under assumption 1(s) for ‖ · ‖px
and ‖ · ‖py

norms, assumption 2 for ‖ · ‖px
and

‖ · ‖py
norms we have

– Function x∗g(y) is
Lxy

µx
-Lipschitz continuous w.r.t. the norm ‖ · ‖px

.

– Function y∗g(x) is
Lxy

µy
-Lipschitz continuous w.r.t. the norm ‖ · ‖px

– Function g(x) is Lg =
(
Lxx +

2L2
xy

µy

)
-smooth w.r.t. the norm ‖ · ‖px

.

– Let ỹδ(x) - (δ, σ) be solution to problem max
y∈R

ny
f(x, y). Then for any x′, x ∈ X

with probability at least 1− σ we have:

µx

2
‖x−x′‖2px

≤ g(x′)−f(x, ỹδ(x))−〈∇xf(x, ỹδ(x)), x
′ − x〉 ≤ 2Lg

2
‖x′−x‖2px

+2δ

– We define

g(x) = max
y∈R

ny
f(x, y), h(y) = min

x∈X
f(x, y)

Let x̂ be (εx, σx)-solution of problem min
x∈X

g(x), let ỹεy (x̂) be (εy, σy)-solution

of problem max
y∈R

ny
f(x̂, y). Then ỹεy (x̂) is (ε̃, 1−σx−σy)-solution to problem,

where

ε̃ =

(
Lyy

µy
+

2L2
xy

µxµy

)
εy +

(
L2
xyLyy

µxµ2
y

+
2L4

xy

µ2
xµ

2
y

)
εx

Proof
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1. Estimate ‖y∗(x)− y∗(x′)‖py
:

‖y∗(x) − y∗(x′)‖2py
≤ 2

µy
(f(x, y∗(x))− f(x, y∗(x′)))

≤ 2

µy
(f(x, y∗(x)) − f(x, y∗(x′)))− 2

µy
(f(x′, y∗(x))− f(x′, y∗(x′)))

=
2

µy

1∫

0

〈∇xf(x
′ + t(x− x′), y∗(x))−∇xf(x

′ + t(x− x′), y∗(x′)), x′ − x〉dt

≤ 2

µy

1∫

0

‖∇xf(x
′ + t(x− x′), y∗(x))−∇xf(x

′ + t(x− x′), y∗(x′))‖qx‖x′ − x‖px
dt

≤ 2

µy
Lxy‖x′ − x‖px

‖y∗(x)− y∗(x′)‖py

In thus way, we have

‖y∗(x)− y∗(x′)‖py
≤ 2Lxy

µy
‖x′ − x‖px

2. Estimate ‖x∗(y)− x∗(y′)‖px
. Due to µx-strong convexity function f(x, y):

‖x∗(y) − x∗(y′)‖2px
≤ 2

µx
(f(x∗(y), y′)− f(x∗(y′), y′))

≤ 2

µx
(f(x∗(y), y′)− f(x∗(y′), y′))− 2

µx
(f(x∗(y), y)− f(x∗(y′), y))

=
2

µx

1∫

0

〈∇yf(x
∗(y), y + t(y′ − y))−∇yf(x

∗(y′), y + t(y′ − y)), y′ − y〉dt

≤ 2

µx

1∫

0

‖∇yf(x
∗(y), y + t(y′ − y))−∇yf(x

∗(y′), y + t(y′ − y))‖qy‖y′ − y‖py
dt

≤ 2

µx
Lxy‖y′ − y‖py

‖x∗(y)− x∗(y′)‖px

We have

‖x∗(y)− x∗(y′)‖px
≤ 2Lxy

µx
‖y′ − y‖py

3. Consider the following value ‖∇g(x)−∇g(x′)‖qx :

‖∇g(x)−∇g(x′)‖qx = ‖∇xf(x, y
∗(x)) −∇xf(x

′, y∗(x′))‖qx
≤ ‖∇xf(x, y

∗(x)) −∇xf(x, y
∗(x′))‖qx

+ ‖∇xf(x, y
∗(x′))−∇xf(x

′, y∗(x′))‖qx
≤ Lxx‖x− x′‖px

+ Lxy‖y∗(x)− y∗(x′)‖py
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Then we have:

‖∇g(x)−∇g(x′)‖qx ≤
(
Lxx +

2L2
xy

µy

)
‖x− x′‖px

4. Let ỹδ(x) - (δ, σ) be solution to problem max
y∈R

ny
f(x, y), and y∗(x) be exact

solution. We prove the left side of inequality. For any x, x′ ∈ X we have

g(x′) = f(x′, y∗(x′)) ≥ f(x′, ỹδ(x)) ≥ f(x, ỹδ(x)) + 〈∇xf(x, ỹδ(x)), x
′ − x〉+ µx

2
‖x− x′‖2px

Then we have

µx

2
‖x− x′‖2px

≤ g(x′)− f(x, ỹδ(x)) − 〈∇xf(x, ỹδ(x)), x
′ − x〉

Now we prove the left side of inequality. For any x, x′ ∈ X we have with
probability at least 1− σ

g(x′) ≤ g(x) + 〈∇g(x), x′ − x〉+ Lg

2
‖x− x′‖2px

≤ f(x, ỹδ(x)) + 〈∇xf(x, ỹδ(x)), x
′ − x〉+ Lg

2
‖x− x′‖2px

+ δ

+ 〈∇xf(x, ỹδ(x)) −∇g(x), x − x′〉

≤ f(x, ỹδ(x)) + 〈∇xf(x, ỹδ(x)), x
′ − x〉+ Lg

2
‖x− x′‖2px

+ δ

+ ‖∇xf(x, ỹδ(x)) −∇g(x)‖qx ‖x− x′‖px

Estimate ‖∇xf(x, ỹδ(x)) −∇g(x)‖qx . we have with probability at least 1−σ

‖∇xf(x, ỹδ(x)) −∇g(x)‖2qx = ‖∇xf(x, ỹδ(x))−∇xf(x, y
∗(x))‖2qx ≤ L2

xy‖ỹδ(x) − y∗(x)‖2py

≤
2L2

xy

µy
(f(x, y∗(x)) − f(x, ỹδ(x))) ≤

2L2
xy

µy
δ

Then for any x, x′ ∈ X we have with probability at least 1− σ

g(x′) ≤ f(x, ỹδ(x)) + 〈∇xf(x, ỹδ(x)), x
′ − x〉+ Lg

2
‖x− x′‖2px

+ δ +

√
2L2

xy

µy
δ‖x− x′‖px

≤ f(x, ỹδ(x)) + 〈∇xf(x, ỹδ(x)), x
′ − x〉+

(
Lg

2
+

2L2
xy

µy

)
‖x− x′‖2px

+ 2δ

≤ f(x, ỹδ(x)) + 〈∇xf(x, ỹδ(x)), x
′ − x〉+

(
Lxx

2
+

3L2
xy

µy

)
‖x− x′‖2px

+ 2δ

≤ f(x, ỹδ(x)) + 〈∇xf(x, ỹδ(x)), x
′ − x〉+ 2

(
Lxx +

2L2
xy

µy

)
‖x− x′‖2px

+ 2δ

I this way, we have function g(x) equips (2δ, σ, 2Lg, µx)-oracle.
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5. According to µx-strong convexity of function g(x), we have with probability
at least 1− σx

‖x̂− x∗‖2px
≤ 2

µx
εx

According to µx-strong concavity of function h(x), using union bound we
have with probability at least 1− σy − σx

‖ỹεy(x̂)− y∗‖2py
≤ 2‖ỹεy(x̂)− y∗(x̂)‖2py

+ 2‖y∗(x̂)− y∗‖2py

≤ 2

µy
εy +

L2
xy

µ2
y

‖x̂− x∗‖2px
≤ 2

µy
εy +

2L2
xy

µxµ2
y

εx

We have with probability at least 1− σy − σx

h(y∗)− h
(
ỹεy (x̂)

)
≤
Lyy +

2L2
xy

µx

2
‖y∗ − ỹεy (x̂)‖2py

≤
(
Lyy

µy
+

2L2
xy

µxµy

)
εy +

(
L2
xyLyy

µxµ2
y

+
2L4

xy

µ2
xµ

2
y

)
εx

Theorem 7. Let ε > 0 be the target accuracy of the solution to the problem (15)
and σ ∈ (0, 1) be the target confidence level. Let the auxiliary problems (16), (17)
be solved with accuracies

εx = Õ



ε
(

L2
xyLyy

µx(µy + Lyy)2
+

2L4
xy

µ2
x(µy + Lyy)2

)−1


 ;

εy = Õ



ε
(

Lyy

µy + Lyy
+

2L2
xy

µx(µy + Lyy)

)−1(
Lxx

µx
+

2L2
xy

µx(µy + Lyy)

)−1/2




and confidence levels

σx = Õ

(
σ

√
µy

Lyy

)
;

σy = Õ


σ

(
LxxLyy

µxµy
+

2L2
xy

µxµy

)−1/2

 ,

that is, a (εx, σx)−solution to the problem (17) and a (εy, σy)−solution to the
problem (16) are found (see Definition 5). Then, under assumptions 1(s), 2, the
proposed Approach 3 guarantees to find an (ε, σ)-solution to the problem (15).
Moreover, the required number of calls to the first-order oracle ∇xf(x, y) and
the zeroth-order oracle f(x, y) satisfy the following bounds

Total Number of Calls for ∇xf(x, y) is Õ

(√
Lxx

µx
+

2L2
xy

µxµy

)
,

Total Number of Calls for f(x, y) is Õ

(
ny

√
LxxLyy

µxµy
+

2L2
xy

µxµy

)
.
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Proof. Oracles Complexities Analysis

Now we can analyze the oracle complexity of our approach

1. The number of iterations of the Catalyst algorithm 3 (see [15]) to solve the
problem (22) with the accuracy of ε:

Õ

(√
H1

µy

)
(54)

2. Now we need to determine the number of iterations of the M method to
solve the problem (23). According to theorem 3, the number of iterations of
algorithm 2 required to find the solution with accuracy εy is

NARDDsc = Õ

(
ny

√
Lyy +H1

µy +H1
log

(
(µy +H1)R

2
py

εy

))
. (55)

3. Now we solve the outer problem (27) with the algorithm 4. We need to deter-
mine the Lipschitz constant and the strong convexity constant. The strong
convexity constant remains the same, the Lipschitz constant, according to
Lemma 4, is

Lg = Lxx +
2L2

xy

µy +H1
.

Complexity of solution of the outer problem (27) (number of calculations of
the gradient value ∇xf(x, y)) with accuracy εx:

Nouter = Õ

(√
Lg

µx

)
= Õ

(√
Lxx

µx
+

2L2
xy

µx(µy +H1)

)
(56)

4. Thus, the total complexity of calls of zeroth-order oracle f(x, y), solving the
inner problem (15) by the algorithm 2 with accuracy ε, taking H1 = Lyy, is
equal to

Ninner = Õ

(
ny

√
Lyy +H1

µy +H1

√
H1

µy

√
Lxx

µx
+

2L2
xy

µx(µy +H1)

)

= Õ

(
ny

√
Lyy + Lyy

µy + Lyy

√
Lyy

µy

√
Lxx

µx
+

2L2
xy

µx(µy + Lyy)

)

= Õ

(
ny

√
Lyy + Lyy

Lyy

√
LxxLyy

µxµy
+

2L2
xyLyy

µxµyLyy

)

= Õ

(
ny

√
LxxLyy

µxµy
+

2L2
xy

µxµy

)
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Inexactness Complexities Analysis

Now it remains to determine with what accuracy εx, εy it is necessary to solve
inner (26) and outer (27) problems, so that the number of calls to the oracles
satisfies this ratio (??). In order to answer this question, we will introduce new
designations and redefine some things. First, we denote

ξ(x) = max
y∈R

ny
ψ(x, y), ζ(y) = min

x∈X
ψ(x, y)

Let x̂ ∈ X be (εx, σx)-solution to problem min
x∈X

ξ(x), in other words, we have

with probability at least 1− σx:

0 ≤ ξ(x̂)−min
x∈X

ξ(x) = ψ(x̂, y∗(x̂))− ψ(x∗, y∗) ≤ εx

Let ỹεy (x̂) - (εy, σy)-solution to problem max
y∈R

ny
ψ(x̂, y), in other words, we have

with probability at least 1− σy :

0 ≤ ψ(x̂, y∗(x̂))− ψ(x̂, ỹεy (x̂)) ≤ εy

First, according to corollary 1 for min
x∈X

ξ(x), we have a limit on noise εy:

εy

(
1 +

√
Lg

µx

)
= O (εx)

Thus, we have

εy = O

(
εx

√
µx

Lg

)

It remains only to understand how to define εx via ε.To answer this question
using the main lemma 4, replacing µy with µy +H1 and Lyy with Lyy +H1, we
obtain inequality:

ε̃ ≥
(
Lyy +H1

µy +H1
+

2L2
xy

µxµy

)
εy +

(
L2
xy(Lyy +H1)

µx(µy +H1)2
+

2L4
xy

µ2
x(µy +H1)2

)
εx

According to results from [13], we have ε̃ = O(ε). Then we have

εx = Õ



ε
(
L2
xy(Lyy +H1)

µx(µy +H1)2
+

2L4
xy

µ2
x(µy +H1)2

)−1




εy = Õ



ε
(
Lyy +H1

µy +H1
+

2L2
xy

µx(µy +H1)

)−1√
µx

Lg
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Using that H1 = Lyy, we have

εx = Õ


ε
(

L2
xyLyy

µx(µy + Lyy)2
+

2L4
xy

µ2
x(µy + Lyy)2

)−1



εy = Õ


ε
(

Lyy

µy + Lyy
+

2L2
xy

µx(µy + Lyy)

)−1√
µx

Lxx +
2L2

xy

µy+Lyy




According to theorem 6 and approach 3, we have that

σx = Nouterσy,where Nouter = Õ

(√
Lxx

µx
+

2L2
xy

µx(µy + Lyy)

)

Having obtained this ratio, we now need to determine how they relate to each
other. Using the catalyst algorithm and the convergence proof, one can easily
show that

σ ≥ NCatalyst(σy + σx) > NCatalystNouterσy, where NCatalyst = Õ

(√
Lyy

µy

)

Thus we have

σy = Õ

(
σ

NCatalystNouter

)
= Õ



σ

√
µy

Lyy

(
Lxx

µx
+

2L2
xy

µx(µy + Lyy)

)−1




= Õ



σ

√(
LxxLyy

µxµy
+

2L2
xyLyy

µx(µy + Lyy)µy

)−1




= Õ


σ

(
LxxLyy

µxµy
+

2L2
xy

µxµy

)−1/2



σx = σyNouter = Õ

(
σNouter

NCatalystNouter

)
= Õ

(
σ

NCatalyst

)
= Õ

(
σ

√
µy

Lyy

)
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