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Solving strongly convex-concave composite saddle-point
problems with low dimension of one group of variables

M. S. Alkousa, A. V. Gasnikov, E. L. Gladin,
I. A. Kuruzov, D. A. Pasechnyuk and F. S. Stonyakin

Abstract. Algorithmic methods are developed that guarantee efficient
complexity estimates for strongly convex-concave saddle-point problems in
the case when one group of variables has a high dimension, while another
has a rather low dimension (up to 100). These methods are based on
reducing problems of this type to the minimization (maximization) prob-
lem for a convex (concave) functional with respect to one of the variables
such that an approximate value of the gradient at an arbitrary point can
be obtained with the required accuracy using an auxiliary optimization
subproblem with respect to the other variable. It is proposed to use the
ellipsoid method and Vaidya’s method for low-dimensional problems and
accelerated gradient methods with inexact information about the gradient
or subgradient for high-dimensional problems. In the case when one group
of variables, ranging over a hypercube, has a very low dimension (up to
five), another proposed approach to strongly convex-concave saddle-point
problems is rather efficient. This approach is based on a new version of
a multidimensional analogue of Nesterov’s method on a square (the multi-
dimensional dichotomy method) with the possibility to use inexact values
of the gradient of the objective functional.

Bibliography: 28 titles.

Keywords: saddle-point problem, ellipsoid method, Vaidya’s method,
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§ 1. Introduction

Saddle-point problems are quite topical since they arise in real-life problems of
machine learning, computer graphics, game theory and optimal transport theory.
In view of the importance of this type of problem, there are many papers devoted to
various algorithms for their solution and theoretical results concerning their rates
of convergence (or complexity); see [1]–[8].
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This paper considers convex-concave saddle-point problems of the form

min
x∈Qx

max
y∈Qy

{
Ŝ(x, y) := r(x) + F (x, y)− h(y)

}
, (1.1)

where Qx ⊆ Rn and Qy ⊆ Rm are nonempty convex compact sets and r : Qx → R
and h : Qy → R are a µx-strongly convex function and a µy-strongly convex func-
tion, respectively. The functional F : Qx×Qy → R is convex with respect to x and
concave with respect to y and is defined in a neighbourhood of the set Qx × Qy.
When the problem is not strongly convex (the case µx = 0 or µy = 0), we can reduce
it to a strongly convex one using regularization methods (see [9], Remark 4.1).

The class of problems (1.1) was studied already in sufficient detail some time ago
in the bilinear case, that is, when F (x, y) = ⟨Ax, y⟩ for some linear operator A (see,
for example, an overview in [6]). Other investigations were aimed at generalizing
the results known in the bilinear case to the general situation; see [3], [5], [10]
and [11].

In [12] the problem was considered in the case when Qx ≡ Rn, Qy ≡ Rm, and for
any x and y the function Ŝ(x, y) = F (x, y) is µx-strongly convex with respect to x,
µy-strongly concave with respect y and (Lxx, Lxy, Lyy)-smooth. The last property
means that for any fixed x the maps ∇yF (x, · ) and ∇xF (x, · ) are Lipschitz-conti-
nuous with some nonnegative constants Lyy and Lxy, while for any fixed y the
maps∇xF (·, y) and∇yF (·, y) are Lipschitz-continuous with constants Lxx and Lxy.
In [12], for this class of problems a lower complexity estimate of the form

N(ε) = Ω
(√

Lxx

µx
+

L2
xy

µxµy
+

Lyy

µy
ln

(
1
ε

))
was substantiated, where N(ε) = Ω(f(ε)) means that there are C > 0 and ε0 > 0
such that |N(ε)| > C|f(ε)| for any ε < ε0. In [1], an approach based on accelerated
methods was proposed with a complexity estimate which was closest to the optimal
one at that time. Thereafter, attempts were made to obtain an optimal algorithm;
see [4] and [7]. For instance, a method proposed in [13] had an upper estimate of the
form Õ

(√
Lxx/µx + L · Lxy/(µxµy) + Lyy/µy

)
, where L = max

{
Lxx, Lxy, Lyy

}
for

the number of iterations (the notation Õ( · ) means O( · ) up to a factor logarithmic
in ε−1 and raised to power 1 or 2). Thus, the problem of a near-optimal algorithm
for a strongly convex-concave saddle-point problem of high dimension with smooth
objective function was solved.

Table 1 shows the best currently known results (see [1]–[7] and the references
there) concerning complexity estimates for the solution of problem (1.1).

In each case, an ε-solution of (1.1) can be obtained after Õ( · ) (specified in
the first column) iterations of the quantity in the second column. The Lipschitz
constant for ∇F (the gradient with respect to x and y) is denoted by LF . Now,
a function r : Qx → R is said to be prox-friendly if we can solve explicitly a problem
of the form

min
x∈Qx

{
⟨c1, x⟩+ r(x) + c2∥x∥22

}
, c1 ∈ Qx, c2 > 0. (1.2)

The prox-friendliness of h : Qy → R is defined similarly for problems of the form

min
y∈Qy

{
⟨c3, y⟩+ h(y) + c4∥y∥22

}
, c3 ∈ Qy, c4 > 0. (1.3)
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Table 1. Best known results on the complexity of methods for the problem (1.1)

Estimate Calls of subroutines

Case 1: both functions r and h are prox-friendly

Õ

(
LF√
µxµy

)
computing ∇xF (x, y) and ∇yF (x, y)

and solving problems (1.2) and (1.3)

Case 2: r is an Lx-smooth not prox-friendly function

Õ

(√
LxLF

µxµy

)
computing ∇r(x)

Õ

(
LF√
µxµy

)
computing ∇xF (x, y) and ∇yF (x, y) and solving problem (1.3)

Case 3: h is an Ly-smooth not prox-friendly function

Õ

(√
LyLF

µxµy

)
computing ∇h(y)

Õ

(
LF√
µxµy

)
computing ∇xF (x, y) and ∇yF (x, y) and solving problem (1.2)

Case 4: r and h are Lx- and Ly-smooth not prox-friendly functions

Õ

(√
LxLF

µxµy

)
computing ∇r(x)

Õ

(√
LyLF

µxµy

)
computing ∇h(y)

Õ

(
LF√
µxµy

)
computing ∇xF (x, y) and ∇yF (x, y)

Note that a saddle-point problem can also be reduced to a variational inequality
with monotone operator. Recall that an operator G : domG → Rk defined on
a convex set dom G ⊆ Rk is called monotone if

⟨G(z)−G(z′), z − z′⟩ ⩾ 0 ∀ z, z′ ∈ Q,

where Q is a convex compact set with nonempty interior and int Q ⊆ dom G.
A solution of a variational inequality is a point z∗ ∈ dom G ∩Q such that

⟨G(z∗), z − z∗⟩ ⩾ 0 ∀ z ∈ Q.

Convex-concave saddle-point problems of the form (1.2) with differentiable func-
tion S( · , · ) and functions r and h identically equal to zero are reducible to a varia-
tional inequality with operator G(x, y) = [∇xS(x, y),−∇yS(x, y)]⊤, which is mono-
tone because S is convex in x and concave in y. A variational inequality of this
type can be solved, for example, using the ellipsoid method from [14], which yields
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the rate of convergence O

(
exp

{
− N

2d(d + 1)

})
, where d = n + m is the dimension

of the problem and N is the number of iterations. This approach to the solution of
problem (1.2) requires neither the smoothness nor the strong convexity (concav-
ity) of the objective function S( · , · ) and can be considered to be quite efficient
in the case when the dimension of the problem d = n + m is low. In addition,
based on methods like the centre of gravity method, we can improve the estimate

O

(
exp

{
− N

2d(d + 1)

})
to O

(
exp

{
− N

O(d)

})
; see [15], Lecture 5. Note that the

first of the above approaches to problem (1.1) is quite efficient in the case when both
variables in (1.1) are of high dimension, whereas the second approach is efficient
when the dimensions of the variables in the problem are low.

This paper considers the situation when one group of variables (x or y) has a high
dimension, while the other has a low dimension (of several dozens). Problem (1.1) is
represented as a minimization problem with respect to the ‘outer’ variable of a con-
vex function such that information about it (values of the function or its gradient) is
only available with some accuracy. This accuracy, in its turn, is controlled using an
auxiliary optimization subproblem with respect to the ‘inner’ variable. Accordingly,
depending on the (low or high) dimension of the outer variable x, it is natural to
distinguish two approaches of this kind. If the dimension of the outer variable x is
high (§ 2.2), then it is proposed to use the accelerated gradient method with inexact
oracle to solve (1.1) and a cutting plane method (the ellipsoid or Vaidya’s method)
to solve the auxiliary maximization subproblem. If the dimension of the outer vari-
able x is low, then the versions of cutting plane methods (the ellipsoid and Vaidya’s
method) proposed in this paper are applied to solve (1.1) using inexact analogues of
the gradient of the objective function (δ-subgradients or δ-additively inexact gradi-
ents) in iterations, while accelerated gradient methods are applied to solve the inner
optimization subproblem. To deduce estimates for the number of iterations (calls of
the subroutine for finding the (sub)gradient of a functional or its ‘inexact analogue’)
sufficient for attaining the required quality of solutions of the saddle-point prob-
lem (1.1) using the above approach, important theoretical results are obtained that
describe the effect of the parameter δ on the quality of the exit point of the ellipsoid
or Vaidya’s method using δ-subgradients or δ-additively inexact gradients instead
of the gradient of the objective function in iterations. Note that Vaidya’s method,
in comparison with the ellipsoid method, yields a better estimate for the number of
iterations sufficient the necessary quality of the approximate solution; however, the
cost per iteration in the ellipsoid method is lower. Thereafter, we consider in detail
the situation when the dimension of one group of variables in the saddle-point prob-
lem (1.1) is very low and the feasible set of values of this variable is a hypercube.
In this case it is possible to use an analogue of the dichotomy method instead of
the ellipsoid method, which can turn out to be more profitable in the case of a very
low dimension (up to five) than cutting plane methods. More precisely, this paper
proposes a minimization method for a convex differentiable function with Lipschitz
gradient on a multidimensional hypercube for low dimension of the space, which is
an analogue of Nesterov’s minimization method for a convex Lipschitz-continuous
function of two variables on a square with fixed side (see [9] and [16]). In what
follows we call this method the multidimensional dichotomy method. The idea of
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this method is to divide the square into smaller parts and remove them gradually
so that all values of the objective function in the remaining rather small domain
are sufficiently close to the optimal value. The method consists in solving auxiliary
one-dimensional minimization problems along separating line segments and does
not involve computing the exact value of the gradient of the objective functional
(that is, the method can be regarded as an incomplete gradient method). In the
two-dimensional case on a square this method was considered in [16]. Our paper
proposes a new version of the stopping criterion for the auxiliary subproblem and
also an analogue of Nesterov’s method for an arbitrary dimension. The results
obtained also apply to saddle-point problems with low dimension of one group of
variables on a hypercube. Complexity estimates are given for this approach to
strongly convex-concave saddle-point problems of the form (1.1) with sufficiently
smooth functionals in the case when the low-dimensional problem is solved by the
dichotomy method with inexact gradient and a high-dimensional auxiliary problem
is solved at each iteration using the fast gradient method for all auxiliary problems.
The estimates obtained for the rate of convergence seem to be acceptable if the
dimension of one group of variables is sufficiently low (up to five).

To compare the proposed approaches to the problem (1.1), one with another
and also with some known analogues, we performed computational experiments for
some types of Lagrangian saddle-point problems associated to minimization prob-
lems for strongly convex functionals with quite a few convex functional inequality
constraints. In particular, numerical experiments were carried out for the dual prob-
lem of the LogSumExp problem with linear constraints (applications of problems
of this type are described, for example, in [2]). We have compared the running
speeds of the approach to (1.1) as a system of subproblems in the cases when
the primal low-dimensional problem is solved by the fast gradient method with
(δ, L)-oracle or by the ellipsoid method with δ-subgradient. The computational
experiments mentioned above showed that the use of the cutting plane methods
under consideration in low-dimensional problems results in a more successful work
with a rather high required accuracy in comparison with methods involving only
gradient approaches. In addition, the multidimensional dichotomy method, which
we propose here, has proved to be more efficient in some cases than cutting plane
methods, which indicates that using this approach can also be reasonable. In the
case when the low-dimensional subproblem is solved by the ellipsoid method, we
made additional experiments to compare different ways of taking account of inex-
actness when gradients with additive noise are used (§ 3.4): using (1.1) as a system
of subproblems the proposed approach, with inexactness values varying with the
diameter of the current ellipsoid, makes it possible to attain the stopping condition
and thus the prescribed accuracy more rapidly. We also made an experiment to
compare the efficiency of the proposed approaches with a known analogue [8] on the
problem of projecting a point onto a set specified by a system of (a small number of)
smooth constraints (§ 3.5). The comparison has shown that the approach using the
ellipsoid method for the low-dimensional problem with the proposed stopping con-
dition and new estimates for the sufficient number of iterations for the inner method
turns out to be much more efficient than the analogous approach in [8]. Note that in
cutting plane methods or the multidimensional analogue of the dichotomy method
that are applied in our paper to low-dimensional subproblems strong convexity is
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only important for theoretical estimates. To implement these methods it is not
necessary to assume the strong convexity of the objective function; therefore, we
do not regularize the Lagrangian saddle-point problems with respect to the dual
variables.

This paper contains an introduction, two basic sections and conclusions. In § 2
the main results and approaches to the problem under consideration are presented
for various cases of low dimension of the outer and inner variables. Subsection 2.1
describes the general scheme of reasoning used to analyze the problems treated
in this paper, which involves considering a family of auxiliary optimization sub-
problems. Subsection 2.2 is a key one; it contains the derivation of estimates
for problem (1.1) in the case of a relatively low dimension of one group of variables
on the basis of new variants of the ellipsoid method and Vaidya’s method for the
corresponding auxiliary subproblems. Subsection 2.3 considers the special case of
a very low (up to five) dimension of one group of variables in the saddle-point
problem and produces complexity estimates for the approach to the problem (1.1)
based on the proposed multidimensional analogue of the dichotomy method with
additively inexact gradient. In § 3 the results of some computational experiments
are presented and the running speeds of the proposed approaches are compared.
The complete proofs of some results (Theorems 3, 6–9 and Lemma 4) are given in § 4.

§ 2. Basic results

2.1. Scheme for the derivation of complexity estimates for the class of
saddle-point problems under consideration.

2.1.1. The statement of the problem. We rewrite problem (1.1) as

min
x∈Qx

{
g(x) := r(x) + max

y∈Qy

S(x, y)
}

, (2.1)

where Qx ⊆ Rn and Qy ⊆ Rm are convex closed sets, Qx is bounded, and S(x, y) =
F (x, y)−h(y) is a continuous function in (1.1) that is strongly convex with respect
to x and strongly concave with respect to y.

Definition 1. A pair of points (x̃, ỹ) ∈ Qx × Qy is called an ε-solution of the
problem (1.1) (or (2.1)) if

max{∥x̃− x∗∥2, ∥ỹ − y∗∥2} ⩽ ε, (2.2)

where (x∗, y∗) is an exact solution of the strongly convex-concave saddle-point prob-
lem (1.1).

Remark 1. In view of the strong convexity of g, for (2.2) to hold it suffices to find x̃
in problem (2.1) such that g(x̃)−minx∈Qx g(x) ⩽ Cε2 (for an appropriate choice of
the positive constant C depending on the strong convexity parameter µx) and also
to solve the auxiliary subproblems with a similar accuracy of O(ε2). Since we use
methods guaranteeing a linear rate of convergence, the final complexity estimates
for (1.1) contain quantities like Cε2 under the sign of logarithm. That is, to deduce
asymptotic complexity estimates for saddle-point problems of the form (1.1), it suf-
fices to find x̃ such that g(x̃)−minx∈Qx g(x) ⩽ ε. We use this in our reasoning.
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We view (2.1) as the composition of the inner maximization problem

ĝ(x) := max
y∈Qy

S(x, y) (2.3)

and the outer minimization problem

min
x∈Qx

g(x). (2.4)

The iteration method for the outer problem (2.4) uses the gradient of the objective
function at each step, which can be computed with some accuracy based on an
approximate solution of the inner problem (2.3). In this connection we need clear
estimates for the quality of solutions produced by our method in the case when inex-
act information about the gradient or subgradient of the objective function is used
in iterations. It turns out that δ-subgradients (see Definition 2), (δ, L)-subgradients
(see (2.5) below and also [1]) and δ-inexact subgradients (see Definition 3 below) can
be regarded as an appropriate inexact analogue of the subgradient of the objective
function for saddle-point problems.

Definition 2. Let δ ⩾ 0. A vector ν(x̂) ∈ Rn is said to be a δ-subgradient of
a convex function g : Qx → R at a point x̂ if g(x) ⩾ g(x̂) + ⟨ν(x̂), x− x̂⟩− δ for any
x ∈ Qx. The set of δ-subgradients of g at x̂ is denoted by ∂δg(x̂).

Note that δ-subgradients coincide with the ordinary subgradient for δ = 0.

Definition 3. Let δ ⩾ 0. A vector ν(x̂) ∈ Rn is said to be a δ-inexact subgradient
of a convex function g : Qx → R at a point x̂ if ∥∇g(x̂) − ν(x̂)∥2 ⩽ δ for some
subgradient ∇g(x̂) ∈ ∂g(x̂). If we know that g is differentiable at x̂, then ν(x̂) is
said to be a δ-inexact gradient.

2.1.2. Computing inexact analogues of the gradient of the objective function in
the primal subproblem. As an approximate subgradient of the objective function
g in the problem (2.4) at a point x ∈ Qx, we propose to use the subgradient
∇r(x)+∇xS(x, ỹ), where ỹ is an ε̃-solution of the auxiliary subproblem (2.3) for x,
and ∇r(x) ∈ ∂r(x) and ∇xS(x, ỹ) ∈ ∂xS(x, ỹ) are arbitrary finite subgradients at x
of r and S(·, ỹ), respectively. It turns out that an inexact subgradient of this kind
can be a δ-subgradient of the objective function g at x if the accuracy ε̃ for the
auxiliary problem is chosen according to the following lemma.

Lemma 1 (see [17], pp. 123, 124). For fixed x assume that ỹ ∈ Qy in problem (2.1)
is such that ĝ(x)− S(x, ỹ) ⩽ δ . Then ∂xS(x, ỹ) ⊆ ∂δ(ĝ(x)).

This lemma states that to find a δ-subgradient of the function g it suffices to
solve the maximization problem (2.3) with accuracy ε̃ = δ.

It turns out (see [1]) that for saddle-point problems of the form (2.1) with the
corresponding assumptions and accuracy of solving the auxiliary problem, we can
guarantee that a (δ, L)-subgradient ∇δ,Lg(x) of g at an arbitrary point x ∈ Qx

can be found for an appropriate L > 0 and an arbitrarily small δ > 0:

g(x) + ⟨∇δ,Lg(x), y − x⟩ − δ ⩽ g(y) ⩽ g(x) + ⟨∇δ,Lg(x), y − x⟩+
L

2
∥y − x∥22 + δ.

(2.5)

It is clear that a (δ, L)-subgradient ∇δ,Lg(x) is a δ-subgradient of g at x with an
additional condition of the form (2.5).
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The following known result is implied directly by a similar result [18] for the
well-known notion of a (δ, L)-oracle and explains the relationship, which we use in
what follows, between two analogues of the gradient (δ-subgradients and δ-inexact
subgradients) of a convex function g admitting a (δ, L)-Lipschitz subgradient at
each point x ∈ Qx.

Theorem 1. Let g : Qx → R be a convex function, and let ν(x) = ∇δ,Lg(x) be
a (δ, L)-subgradient of it at a point x ∈ int Qx . Let ρ(x, ∂Qx) be the Euclidean
distance of x to the boundary of the set Qx . If ρ(x, ∂Qx) ⩾ 2

√
δ/L, then for any

subgradient ∇g(x)
∥ν(x)−∇g(x)∥2 ⩽ 2

√
δL.

From Lemma 1 and Theorem 1 we can conclude that to find a δ-inexact subgra-
dient of g at a point x ∈ int Qx for sufficiently small δ > 0 it suffices to solve the
maximization problem (2.3) with accuracy ε̃ = δ2/(4L).

Another method for finding a δ-inexact subgradient (in this case, a δ-inexact
gradient, since differentiability is additionally assumed) can be used under the fol-
lowing additional assumption.

Assumption 1. The function S(·, y) is differentiable for all y ∈ Qy and satisfies
the condition

∥∇xS(x, y)−∇xS(x, y′)∥2 ⩽ Lxy∥y − y′∥2 ∀x ∈ Qx, y, y′ ∈ Qy, (2.6)

for some Lxy ⩾ 0.

Lemma 2. Under the assumptions of problem (2.1) and Assumption 1, for any
fixed x ∈ Qx , let ỹ ∈ Qy be a point such that ĝ(x) − S(x, ỹ) ⩽ ε̃. Then ĝ is
differentiable at x and

∥∇xS(x, ỹ)−∇ĝ(x)∥2 ⩽ Lxy

√
2ε̃

µy
.

Thus, to find a δ-inexact gradient of the function g it suffices to solve the maxi-
mization problem (2.3) with accuracy

ε̃ =
µy

2L2
xy

δ2

if Lxy > 0 and with an arbitrary finite accuracy ε̃ if Lxy = 0.
We state another lemma concerning the relationship between two analogues

of the gradient (δ-subgradients and δ-inexact subgradients), which are mentioned
below in this paper.

Lemma 3. Let g : Q → R be a convex function on a convex set Q. Then the
following hold:

1) if Q is bounded, then a δ1-inexact subgradient of g is a δ2-subgradient of g ,
where

δ2 = δ1 diam Q and diam Q = sup
x,x′∈Q

∥x− x′∥2;

2) if the function g is µ-strongly convex, then a δ1-inexact subgradient of g is
a δ2-subgradient with δ2 = δ2

1/(2µ).
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The methods of research and the results in this paper can conventionally be
divided into two groups such that the first group (§ 2.2) is related to cutting plane
methods (the ellipsoid method and Vaidya’s method) for subproblems of low dimen-
sion and the second (§ 2.3) uses our multidimensional version of the dichotomy
method with adaptive stopping rules for subproblems of low dimension (approxi-
mately, up to five). For results based on cutting plane methods for primal sub-
problems the above assertions make it possible to substantiate the potential use of
both δ-subgradients and δ-inexact subgradients of the objective function g in itera-
tions. The complexity estimates for saddle-point problems coincide asymptotically
in these cases. As for the second group of results, which is related to the multi-
dimensional dichotomy method, the assumption of the smoothness of the function
and its δ-inexact gradient (which is precisely the gradient, since this part of the
paper considers only smooth problems) is essential there.

2.1.3. The general scheme (algorithm) of the approach to the class of problems
selected. In this subsection, we present an algorithm for the min-max problem (2.1),
while the following subsections consider specific examples of methods used in the
general algorithm and the corresponding complexity estimates.

Algorithm 1 (algorithm for the min-max problem (2.1)).
Require: a method M1 for the solution of problem (2.4) using δ-subgradi-

ents or δ-inexact gradients, the number N > 0 of steps in this method,
a methodM2 for the solution of problem (2.3), the accuracy ε̃ of its solu-
tion, the initial approximation (x0, y0).

1: for k = 0, . . . , N − 1 do
2: Solve problem (2.3) for fixed x = xk with accuracy ε̃

using the method M2 starting from yk:

yk+1 := M2(xk, yk, ε̃).

3: Set νk+1 := ∇r(xk) +∇xS(xk, yk+1) ∈ ∂r(xk) + ∂xS(xk, yk+1).
4: Make one step of the method M1 from the point xk using

the approximate gradient νk+1:

xk+1 := step(M1, x
k, νk+1).

5: end for
Ensure: xN .

We find the complexity of Algorithm 1 in accordance with the following obvious
principle.

Proposition. Assume that a method M1 for the solution of problem (2.4) using
δ-subgradients or δ-inexact gradients finds an ε-solution after at most N1(ε, δ)
steps,1 and assume that a method M2 for the solution of problem (2.3) finds an
ε̃-solution after at most N2(ε̃) steps. If the accuracy δ of the oracle for problem (2.4)
depends on ε̃ as δ(ε̃), then Algorithm 1 finds an ε-solution of problem (2.1) after
N1(ε, δ(ε̃)) iterations of ∇xS and N1(ε, δ(ε̃)) ·N2(ε̃) iterations of ∇yS .

1For a particular method M1 to guarantee accuracy ε after a finite number of step, we can
need δ to be sufficiently small in comparison with ε (for example, δ < ε). It is assumed in the
proposition that this condition holds.



294 M. S. Alkousa, A.V. Gasnikov, E. L. Gladin et al.

2.2. Cutting plane methods using inexact analogues of the subgradient
and their applications to complexity estimates for saddle-point problems
with low dimension of one group of variables. We describe specific methods
that can be used in Algorithm 1 in the case when the dimension of the outer or inner
variable is relatively low (at most 100) and the objective function is of composite
structure.

We start by stating the problem and describing the methods briefly; we also
deduce complexity estimates in the case of a low dimension of the primal subproblem
(in other words, of the outer variable).

Assume that the following holds for problem (2.1).

Assumption 2. The set Qx has a nonempty interior, the dimension n is relatively
low (at most 100), Qy ≡ Rm, and the function S has the form

S(x, y) := F (x, y)− h(y),

where the µy-strongly convex function h is continuous and the convex-concave func-
tion F is differentiable with respect to y and satisfies

∥∇yF (x, y)−∇yF (x, y′)∥2 ⩽ Lyy∥y − y′∥2 ∀x ∈ Qx, y, y′ ∈ Qy,

for some Lyy ⩾ 0.
Assume that one of the following conditions is also satisfied:
a) h is prox-friendly, that is, we can explicitly solve the problem

min
y∈Qy

{
⟨c1, y⟩+ h(y) + c2∥y∥22

}
, c1 ∈ Qy, c2 > 0; (2.7)

b) h has an Lh-Lipschitz gradient.

Theorem 2. An ε-solution of problem (2.1) can be attained:
• under Assumption 2, after

O

(
n ln

n

ε

)
rounds of calculation of ∇xF, ∇r;

• under Assumption 2,a), after

O

(
n

√
Lyy

µy
ln

n

ε
ln

1
ε

)
rounds of calculation of ∇yF

and solutions of problem (2.7);

• under Assumption 2,b), after

O

(
n

√
Lyy

µy
ln

n

ε
ln

1
ε

)
rounds of calculation of ∇yF and

O

(
n

√
Lh

µy
ln

n

ε
ln

1
ε

)
rounds of calculation of ∇h.

Below we describe methods that apply to the auxiliary subproblems in Algo-
rithm 1 and also theoretical results concerning convergence rate estimates.
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2.2.1. Cutting plane methods using δ-subgradients. We consider a problem of the
form

min
x∈Q

g(x), (2.8)

where Q ⊂ Rn is a convex compact set that lies in a Euclidean ball of radius R
and contains a Euclidean ball of radius ρ > 0, g is a continuous convex function, and
a positive number B is such that

|g(x)− g(x′)| ⩽ B ∀x, x′ ∈ Q.

We propose a generalization of the ellipsoid method (Algorithm 2) for prob-
lem (2.8) that uses δ-subgradients of the objective function in iterations.

Algorithm 2 (ellipsoid method with δ-subgradient for the problem (2.8)).
Require: the number of iterations N > 0, δ ⩾ 0, a ball BR ⊇ Q, its centre c

and radius R.
1: E0 := BR, H0 := R2In, c0 := c.
2: for k = 0, . . . , N − 1 do
3: if ck ∈ Q then
4: wk := w ∈ ∂δg(ck),
5: if wk = 0 then
6: return ck,
7: end if
8: else
9: wk := w, where w ̸= 0 is such that Q ⊂ {x ∈ Ek : ⟨w, x− ck⟩ ⩽ 0}.
10: end if
11: ck+1 := ck −

1
n + 1

Hkwk√
w⊤k Hkwk

,

Hk+1 :=
n2

n2 − 1

(
Hk −

2
n + 1

Hkwkw⊤k Hk

w⊤k Hkwk

)
,

Ek+1 := {x : (x− ck+1)⊤H−1
k+1(x− ck+1) ⩽ 1},

12: end for
Ensure: xN = arg minx∈{c0,...,cN}∩Q g(x).

Theorem 3 (quality estimate for an approximate solution for the ellipsoid method
using δ-subgradients). The point xN ∈ Q obtained after N ⩾ 2n2 ln(R/ρ) iterations
of Algorithm 2 for problem (2.8) satisfies the inequality

g(xN )−min
x∈Q

g(x) ⩽
BR
ρ

exp
(
− N

2n2

)
+ δ. (2.9)

Corollary 1. If the assumptions of Theorem 3 are supplemented with the condition
that g is µx-strongly convex, then the output point xN of Algorithm 2 satisfies the
inequality

∥xN − x∗∥22 ⩽
2
µx

(
BR
ρ

exp
(
− N

2n2

)
+ δ

)
, (2.10)

where x∗ is the required minimum point of g .
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Remark 2. The µx-strong convexity of g and estimate (2.10) are essential for the
attainability of the required quality of the solution of the saddle-point problem (1.1)
in accordance with Definition 1.

Remark 3. The ellipsoid method with δ-subgradient can also be used in the case
when a δ-inexact gradient is available instead of the exact gradient or δ-subgradients
(see Lemma 3).

Now we recall the cutting plane method proposed by Vaidya (see [19]) to solve
the problem (2.8). First we introduce the requisite notation. Given a matrix A and
a vector b, we consider an auxiliary bounded n-dimensional polytope P (A, b) of the
form

P (A, b) = {x ∈ Rn : Ax ⩾ b}, where A ∈ Rm×n, b ∈ Rm,

where Ax ⩾ b is understood as a componentwise inequality (each coordinate of the
vector Ax is not smaller than the corresponding coordinate of b).

We can introduce a logarithmic barrier for the set P (A, b):

L(x; A, b) = −
m∑

i=1

ln(a⊤i x− bi), x ∈ int P (A, b),

where a⊤i is the ith row of the matrix A and int P (A, b) is the interior of P (A, b).
The Hessian H of the function L is

H(x; A, b) =
m∑

i=1

aia
⊤
i

(a⊤i x− bi)2
, x ∈ int P (A, b). (2.11)

The matrix H(x; A, b) is positive definite for all x ∈ int P (A, b). We can also
introduce a volumetric barrier for P (A, b):

V (x; A, b) =
1
2

ln(det H(x; A, b)), x ∈ int P (A, b), (2.12)

where det H(x; A, b) denotes the determinant of H(x; A, b). We introduce the nota-
tion

σi(x; A, b) =
a⊤i (H(x; A, b))−1ai

(a⊤i x− bi)2
, x ∈ int P (A, b), 1 ⩽ i ⩽ m. (2.13)

A volumetric centre of the set P (A, b) is a minimum point of the volumetric
barrier, that is,

xc = arg min
x∈int P (A,b)

V (x; A, b). (2.14)

The volumetric barrier V is a self-concordant function; thus, it can efficiently
be minimized using Newton’s method. A detailed theoretical analysis of Vaidya’s
method can be found in [19] and [20]. It was proved in [21] that Vaidya’s method
can use δ-subgradients instead of the exact subgradient. Below we present a variant
of this method that uses δ-subgradients (Algorithm 3).

Algorithm 3 (Vaidya’s method using δ-subgradients for problems of the
form (2.8)).
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Require: the number of iterations N > 0, δ ⩾ 0, a pair (A0, b0) (see (2.15)),
m0 := n+1, the parameters η ⩽ 10−4 and γ ⩽ 10−3 ·η of the algorithm.

1: for k = 0, . . . , N − 1 do
2: Find an approximate volumetric centre, see (2.14).
3: Compute H−1

k := (H(xk; Ak, bk))−1 and {σi(xk; Ak, bk)}mk
i=1 using

formulae (2.11) and (2.13),
4: ik := arg min1⩽i⩽mk

σi(xk; Ak, bk).
5: if σik

(xk; Ak, bk) < γ then
6: Obtain (Ak+1, bk+1) via eliminating the ikth row in (Ak, bk),
7: mk+1 := mk − 1.
8: else
9: ck ∈ −∂δg(xk).
10: Derive βk ∈ R such that c⊤k xk ⩾ βk from the equation

c⊤k H−1
k ck

(c⊤k xk − βk)2
=

1
2
√

ηγ,

11: Ak+1 :=
(

Ak

c⊤k

)
, bk+1 :=

(
bk

βk

)
, mk+1 = mk + 1.

12: end if
13: end for
Ensure: xN = arg minx∈{x0,...,xN−1} g(x).

This algorithm returns a sequence of pairs (Ak, bk) ∈ Rmk×n×Rmk such that the
corresponding polyhedra contain the required solution of the problem. As an initial
polytope specified by the pair (A0, b0) we can choose, for example, the simplex

P0 =
{

x ∈ Rn : xj ⩾ −R, j = 1, . . . , n,

n∑
j=1

xj ⩽ nR
}
⊇ BR ⊇ X ,

so that

b0 = −R
[
1n

n

]
and A0 =

[
In

−1⊤n

]
, (2.15)

where In denotes the identity matrix of size n × n and 1n denotes the vector
(1, . . . , 1)⊤ ∈ Rn. In this case m0 is equal to n + 1.

Theorem 4 (see [21]). After

N ⩾
2n

γ
ln

(
n1.5R

γρ

)
+

1
γ

ln π

iterations Vaidya’s method with δ-subgradient for problem (2.8) returns a point xN

such that

g(xN )−min
x∈Q

g(x) ⩽
n1.5BR

γρ
exp

(
ln π − γN

2n

)
+ δ, (2.16)

where γ > 0 is a parameter of Algorithm 3.
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Corollary 2. If the assumptions in Theorem 4 are supplemented with the µx-strong
convexity of g , then the output point xN of Algorithm 3 satisfies the inequality

∥xN − x∗∥22 ⩽
2
µx

(
n1.5BR

γρ
exp

(
ln π − γN

2n

)
+ δ

)
,

where x∗ is a minimum point of g .

Remark 4 (taking account of inexact information about the value of the objective
function). Both the ellipsoid method and Vaidya’s method use values of the objec-
tive function to obtain the outputs (xN ) of algorithms. However, within the mean-
ing of the statement of the saddle-point problem under consideration, it can natu-
rally occur that the value of the objective function of the auxiliary subproblem is
only available with some accuracy δ̃. In this case the above quality estimates (2.9)
and (2.16) for approximate solutions produced by the methods in question must be
improved by adding the term δ̃ to the right-hand sides. In fact, if gδ̃ differs from g

by δ̃, then for

x̃N := arg min
x∈{x0,...,xN−1}

gδ̃(x) and xN := arg min
x∈{x0,...,xN−1}

g(x),

we have g(x̃N ) ⩽ g(xN ) + δ̃.

Remark 5. Vaidya’s method with δ-subgradients can also be used in the case when
information about a δ-inexact subgradient is available instead of the exact subgra-
dient or δ-subgradients (see Lemma 3).

Remark 6 (comparing the complexity results for the ellipsoid method and Vaidya’s
method). Regarding the number of iterations needed to attain the prescribed accu-
racy (with respect to the function) of the solution of the minimization problem,
the ellipsoid method if inferior to Vaidya’s. In fact, the estimate for the number
of iterations in the ellipsoid method depends quadratically on the dimension of the
space, whereas in Vaidya’s method it is proportional to n ln n.

On the other hand the complexity per iteration in the ellipsoid method is less
than in Vaidya’s method. In fact, to perform an iteration in Vaidya’s method we
need to find the inverse of a square matrix of order n, while in the ellipsoid method
it suffices to multiply a matrix of this size by a vector.

2.2.2. Accelerated methods for composite optimization problems in spaces of high
dimension. In this subsection we consider the approaches to auxiliary subproblems
arising in the solution of the primal problems (1.1) and (2.1) used in the case when
these subproblems are of high dimension. More precisely, we describe methods for
convex composite minimization problems of the form

min
y∈Rm

{
U(y) := u(y) + v(y)

}
, (2.17)

where u is a µ-strongly convex function with Lu-Lipschitz gradient and v is a convex
function.
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Algorithm 4 (accelerated meta-algorithm (AM) for problem (2.17); see [4]).
Require: the number of iterations K ⩾ 1, the initial point z0, the parame-

ter H > 0.
1: A0 = 0, y0 = z0.
2: for k = 0, . . . ,K − 1 do

3: λk+1 =
1

2H
,

4: ak+1 =
λk+1 +

√
λ2

k+1 + 4λk+1Ak

2
, Ak+1 = Ak + ak+1,

5: z̃k =
Ak

Ak+1
yk +

ak+1

Ak+1
zk,

6:

yk+1 = arg min
y∈Rd

{
u(z̃k)+⟨∇u(z̃k), y− z̃k⟩+v(y)+

H

2
∥y− z̃k∥22

}
, (2.18)

7: zk+1 := zk − ak+1∇u(yk+1)− ak+1∇v(yk+1),
8: end for
Ensure: AM(z0, K) := yK .

Algorithm 5 (restarted accelerated meta-algorithm; see [4]).
Require: the number of restarts K ⩾ 1, the initial point z0, the parame-

ters H and µ > 0.
1: for k = 0, . . . ,K − 1 do

2: Nk =
⌈√

32H

µ

⌉
,

3: zk+1 := AM(zk,Nk) (Algorithm 4),
4: end for
Ensure: zK .

Theorem 5 (complexity estimate for the restarted accelerated meta-algorithm;
see [4]). Let zN be the output of Algorithm 5 after N iterations. If H ⩾ 2Lu , then
the total number of iterations (2.18) needed to attain accuracy U(zN )−U(y∗) ⩽ ε is

N = O

(√
H

µ
ln

(
µR2

y

ε

))
, (2.19)

where Ry = ∥y0 − y∗∥2 and y∗ is an exact solution of the problem (2.17).

Remark 7 (oracle complexity separation). If v has an Lv-Lipschitz gradient, then
we can regard the auxiliary problem (2.18) as a smooth strongly convex problem.
To solve it we can also use the restarted accelerated meta-algorithm by setting

unew := v, vnew(y) := u(z̃k) + ⟨∇u(z̃k), y − z̃k⟩+
H

2
∥y − z̃k∥22,

µnew :=
H

2
and Hnew := 2Lv
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and applying the technique of restarts just like this was done in [4]. Under the con-
dition Lu ⩽ Lv, this makes it possible to obtain an ε-solution of the problem (2.17)
after

O

(√
H

µ
ln

(
µR2

y

ε

))
rounds of calculation of ∇u and

O

(√
Lv

µ
ln

(
µR2

y

ε

))
rounds of calculation of ∇v.

(2.20)

2.2.3. Complexity estimates for algorithms for saddle-point problems using the
ellipsoid or Vaidya’s method for subproblems of low dimension. To find an ε-solu-
tion of the problem (2.1) under Assumption 2 we propose to use the following
approach.

Approach 1 (x is of low dimension). Algorithm 1 is applied to the problem (2.1)
with parameters ε̃ := ε/2, M1 being Vaidya’s method (Algorithm 3) and M2 being
the restarted accelerated meta-algorithm (Algorithm 5).

We use the proposition from § 2.1 to establish the complexity of Approach 1.
To do this, using the notation from the statement of the above proposition, we
need to write out the dependencies N1(ε, δ), δ(ε̃), and N2(ε̃). By Lemma 1 the
accuracy ε̃ = ε/2 of the solution of the inner problem yields accuracy δ = ε/2 of
the δ-subgradient. As we can see from Theorem 4, the number of iterations in
Vaidya’s method is

N1

(
ε,

ε

2

)
=

⌈
2n

γ
ln

(
2n1.5BR

γρε

)
+

ln π

γ

⌉
.

The restarted accelerated meta-algorithm (Algorithm 5) is applied to the functions
u( · ) := −F (x, · ) and v( · ) := h( · ) (if Lyy > Lh in Assumption 2, b), then u
and v must be interchanged). Prior to writing down its complexity, we note that
the mapping y∗(x) := arg maxy∈Qy S(x, y) is continuous by virtue of the continuity
of S and its strong convexity with respect to y. Therefore, the set {y∗(x) | x ∈ Qx}
is bounded as the image of a compact set. We denote its diameter by Ry.

If h is prox-friendly (case 1), then, according to (2.19), an ε/2-solution of the
inner problem can be obtained after

N2

(
ε

2

)
= O

(√
Lyy

µy
ln

(
µyR2

y

ε

))
rounds of calculation of ∇yF

and solution of problem (2.7).

If h has an Lh-Lipschitz gradient (case 2), then, according to (2.20), an ε/2-solution
of the inner problem can be obtained after

NF
2

(
ε

2

)
= O

(√
Lyy

µy
ln

(
µyR2

y

ε

))
rounds of calculation of ∇yF and

Nh
2

(
ε

2

)
= O

(√
Lh

µy
ln

(
µyR2

y

ε

))
rounds of calculation of ∇h.
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The above complexity estimates and the proposition in § 2.1 imply a result stated
in Theorem 2. Instead of Vaidya’s method, the ellipsoid method can be used asM1.
By Theorem 3 its complexity is

N1

(
ε,

ε

2

)
=

⌈
2n2 ln

(
2BR
ρε

)⌉
.

In this case we have similar complexity estimates, namely, an ε-solution of the
problem (2.1) can be obtained:
• under Assumption 2, after

O

(
n2 ln

1
ε

)
rounds of calculation of ∇xF and ∇r;

• under Assumption 2, a), after

O

(
n2

√
Lyy

µy
ln2 1

ε

)
rounds of calculation of ∇yF

and solution of problem (2.7);

• under Assumption 2, b), after

O

(
n2

√
Lyy

µy
ln2 1

ε

)
rounds of calculation of ∇yF and

O

(
n2

√
Lh

µy
ln2 1

ε

)
rounds of calculation of ∇h.

Note that when the function h is prox-friendly (Assumption 2, a), M2 in
Approach 1 can, for example, be the method of similar triangles (see [22]), which
makes it possible to remove the requirement Qy ≡ Rm from Assumption 2 while
preserving the same complexity estimates.

Another interesting case arises when Qy = [a1, b1]×· · ·× [am, bm] is a hyperrect-
angle and S is separable with respect to y, that is, for y = (y1, y2, . . . , ym) ∈ Qy

we have S(x, y) =
∑m

i=1 Si(x, yi), where for any x ∈ Qx the functions Si(x, yi) are
continuous and unimodal in yi. Then we can remove the requirement of the smooth-
ness and strong concavity of S in y from Assumption 2 and reduce the auxiliary
problem (2.3) to m one-dimensional maximization problems

max
yi∈[ai,bi]

Si(x, yi), i = 1, . . . ,m.

These problems can be solved using the dichotomy method (segment bisection
method) with accuracy ε/(2m), which guarantees accuracy ε/2 of the solution of the
auxiliary problem (2.3). This approach makes it possible to obtain an ε-solution of

problem (2.1) after O

(
n ln

n

ε

)
rounds of calculation of∇xF and O

(
mn ln

n

ε
ln

m

ε

)
rounds of calculation of S(x, y).
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Finally, we consider the case when, instead of the outer variables x, the inner
ones y are of low dimension. Assume that F is convex with respect to x and
µy-strongly concave with respect to y and also that for any x ∈ Qx and y, y′ ∈ Qy

∥∇xF (x, y)−∇xF (x′, y)∥2 ⩽ Lxx∥x− x′∥2,
∥∇xF (x, y)−∇xF (x, y′)∥2 ⩽ Lxy∥y − y′∥2

and
∥∇yF (x, y)−∇yF (x′, y)∥2 ⩽ Lxy∥x− x′∥2,

where Lxx, Lxy < ∞. Also assume that the function r is µx-strongly convex and
prox-friendly. The outer problem (2.4) (minimization of g) is multidimensional in
this setting. As shown in [1], to minimize g we can use the fast gradient method
with an analogue of inexact oracles, namely, the (δ, L)-model of the objective func-
tion at an arbitrary prescribed point in Qx. Therefore, we propose the following
approach to solve (2.1).

Approach 2 (y is of low dimension). The outer problem (2.4) is solved using the
fast gradient method with (δ, L)-oracle for strongly convex composite optimization
problems (see [1], Algorithm 4). The inner problem (2.3) is solved by Vaidya’s
method (Algorithm 3 with δ = 0).

We can prove that such an approach makes it possible to obtain an ε-solution of
problem (2.1) after

O

(√
L

µx
ln

1
ε

)
rounds of calculation of ∇xF and solution of problem (1.2) and

O

(
m

√
L

µx
ln

1
ε

ln
m

ε

)
rounds of calculation of ∇yF and ∇h,

where L = Lxx + 2L2
xy/µy.

2.3. Multidimensional dichotomy method for optimization problems of
low dimension on a hypercube and its applications to saddle-point prob-
lems. In this subsection we consider the convex-concave saddle-point problem (one
of the composite terms, r, is assumed to be identically equal to zero in problem (1.1))

max
y∈Qy

{
min
x∈Qx

S(x, y) := F (x, y)− h(y)
}

. (2.21)

Assume that the following holds for problem (2.21).

Assumption 3. Qx ⊆ Rn is a hypercube with finite side length, Qy ⊆ Rm is
a nonempty convex compact set, the dimension n is very low (below 5), the function
Ŝ has the form

Ŝ(x, y) = S(x, y) = F (x, y)− h(y),

where the µy-strongly convex function h is continuous, the functional F is defined
in a neighbourhood of the set Qx ×Qy, convex with respect to x and concave with
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respect to y. Assume that F is sufficiently smooth; more precisely, for arbitrary
x, x′ ∈ Qx and y, y′ ∈ Qy we have

∥∇xF (x, y)−∇xF (x′, y)∥2 ⩽ Lxx∥x− x′∥2,
∥∇xF (x, y)−∇xF (x, y′)∥2 ⩽ Lxy∥y − y′∥2

(2.22)

and
∥∇yF (x, y)−∇yF (x′, y)∥2 ⩽ Lxy∥x− x′∥2,
∥∇yF (x, y)−∇yF (x, y′)∥2 ⩽ Lyy∥y − y′∥2,

(2.23)

where Lxx, Lxy, Lyy < +∞. As before (see Assumption 2), assume that one of
conditions a) (case 1) and b) (case 2) holds.

For problem (2.21) we introduce the function

f := max
y∈Qy

S(x, y).

We denote the diameter of the set Qx by R = maxx1,x2∈Qx ∥x1−x2∥. If the length
of each side of the hypercube is a, then R = a

√
n.

Like in §§ 2.1 and 2.3, we consider approaches to (2.21) based on a system of
auxiliary minimization problems. However, to solve low-dimensional (outer) sub-
problems on a hypercube we will use an analogue of the dichotomy method. Thus,
first we describe this approach to the solution of convex minimization problems on
a multidimensional hypercube using inexact gradients in iterations.

We consider an optimization problem of the form

min
x∈Qx

f(x), (2.24)

where f is a Lipschitz function with constant Mf which has a Lipschitz gradient
with constant Lf , and is µf -strongly convex; Qx is a finite hypercube. Below in this
subsection, we describe and analyze Algorithm 6 (the multidimensional dichotomy
method on a hypercube of dimension n ⩾ 2), which is an analogue of Nesterov’s
two-dimensional minimization method on a square (see [22], Exercise 4.2).

Algorithm 6 (multidimensional dichotomy method).
Require: the set Q =

⊗n
k=1[ak, bk], the required accuracy ε in terms of the

function, a procedure for computing an inexact gradient ν(x) that retu-
rns an element in the set

{
ν(x) | ∥ν(x)−∇f(x)∥2 ⩽ δ̃

}
, the initial app-

roximation x, the required number of iterations N∗.
1: if Q = {x} then
2: return x
3: end if
4: while N ⩽ N∗ do
5: for i = 1, . . . , n do

6: c :=
ai + bi

2
7: Fixing one coordinate:

Qnew :=
{
x ∈ Q | xi = c

}
.
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8: A subroutine for computing an inexact gradient in the auxiliary
problem

νnew(x) :=
(
ν1(x) . . . νi−1(x)νi+1(x) . . . νn(x)

)
.

9: Recursive call of the multidimensional dichotomy procedure for
the hypercube Qnew of dimension reduced by one and with the
new required accuracy ε̃ =

µf

128L2R2
ε2 (see (2.26))

x := Dichotomy(Qnew, ε̃, νnew).

10: g := νi(x)
11: if g > 0 then
12: Q[i] := [ai, c]
13: else
14: Q[i] := [c, bi]
15: end if
16: end for

17: x :=
(

a1 + b1

2
· · · an + bn

2

)⊤
18: end while
19: return x

The following result holds for Algorithm 6.

Theorem 6. Assume that f in (2.24) is an Mf -Lipschitz µf -strongly convex func-
tion that has an Lf -Lipschitz gradient. To attain accuracy ε (with respect to the
function) of the output point of Algorithm 6 it suffices to perform

O

(
2n2

logn
2

(
CR

ε

))
, where C = max

(
Mf ,

4(Mf + 2LfR)
Lf

,
128L2

f

µf

)
, (2.25)

calls of the subroutine for computing ν(x), where ν(x) is an approximation of the
gradient ∇f such that ∥∇f(x) − ν(x)∥2 ⩽ δ̃(x) for any current point x. The
accuracy δ̃(x) is derived from condition (2.28), while the accuracy of solving the
auxiliary problems is specified by (2.26).

Using this result and auxiliary minimization methods described in § 2.2, we can
make the following conclusions. Assume that the solution with respect to the
low-dimensional variable is obtained by the multidimensional dichotomy method.
Then accuracy ε in the sense of Definition 1 is attained for the saddle-point prob-
lem (2.21) after the following number of operations:

O

(
2n2

logn
2

(
CR

ε

))
calls of the subroutine of computing ∇xS(x, y);

• in case 1

O

(
2n2

√
Lyy

µy
logn+1

2

(
CR

ε

))
rounds of calculation of ∇yF (x, y)

and solution of subproblem (2.7);
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• in case 2

O

(√
Lh

µy
logn+1

2

(
CR

ε

))
rounds of calculation of ∇h(y) and

O

(
2n2

(√
Lh

µy
+

√
Lyy

µy

)
logn+1

2

(CR

ε

))
rounds of calculation of ∇yF (x, y).

2.3.1. The description of the multidimensional dichotomy method. The multidi-
mensional dichotomy method involves drawing a separating hyperplane through
the centre of the hypercube parallel to one of its faces and solving recursively the
auxiliary optimization problem with some accuracy ε̃, the choice of which is dis-
cussed below. At the point of the approximate solution an inexact gradient ν(x) is
computed such that ∥ν(x) − ∇f(x)∥2 ⩽ δ̃ for an appropriate δ̃. Then we take its
component at the current point that corresponds to the fixed coordinate axis on the
hyperplane in question; depending on its sign, we take the part of the hypercube
not containing the inexact gradient. In one iteration this procedure is executed for
each face of the hypercube. Iterations in the framework of the method are executed
for the main hypercube until the size R of the remaining domain becomes less than
ε/Mf , which guarantees convergence with accuracy ε with respect to the function.
The stopping condition for the auxiliary subproblem guaranteeing that an accept-
able accuracy of the original problem is attained will be described below in detail
(Theorem 10).

We discuss the validity of Algorithm 6. Below we use the following notation.
Assume that a set Q ⊂ Rn and its cross-section of the form Qk = {x ∈ Q | xk = c}
for some c ∈ R and k = 1, . . . , n are considered at the current level of recursion.
Let ν be a vector in Rn. We introduce the projections ν∥Qk

and ν⊥Qk
of ν onto

Qk and its orthogonal complement in the space Rn, respectively. Note that ν⊥Qk

is a scalar.
We present the following auxiliary result.

Lemma 4. Let f be a continuously differentiable convex function. Consider the
minimization problem on the set Qk ⊂ Q for this function. If x∗ is a solution of
this problem, then there exists a conditional subgradient g ∈ ∂Qf(x∗) of f on Qx

such that g∥ = 0.

Note that Algorithm 6 does not converge for all convex functions even if we
assume that all auxiliary one-dimensional minimization subproblems can be solved
exactly. In this connection we mention an example in [16] of a nonsmooth convex
function for which the multidimensional dichotomy method does not converge.

The next statement is a generalization of results (see [16]) on the convergence of
Nesterov’s method on a square to the multidimensional case.

Theorem 7. Assume that f is convex and has an Lf -Lipschitz gradient for some
Lf > 0. Let ν(x) = ∇f(x) and ν⊥Qk

(x) =
(
ν(x)

)
⊥Qk

for any current point x.
If all auxiliary subproblems are solved with accuracy

ε̃ ⩽
µfε2

128L2
fR2

(2.26)
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(with respect to the function), then the part of the feasible set remaining after each
removal of some portion of it (in accordance with parts 11–14 of Algorithm 6)
contains the solution x∗ of the original problem on the hypercube Qx .

This estimate requires an accuracy of order ε2k (with respect to the function) of
the solution of the auxiliary problem at the kth level of recursion. Thus, in view
of the fact that the maximum recursion depth is n − 1, in the worst case we need
to solve the problem with accuracy ε2n−2 with respect to the function at each step
of the algorithm.

Remark 8. The µf -strong convexity of f is only necessary to have a theoretical
estimate for the sufficient accuracy of the solution of the auxiliary subproblems
in iterations of Algorithm 6 that guarantees the required quality of the solution
of problem (2.24) in linear time. To implement the multidimensional dichotomy
method in practice, it is not necessary to know the constant µf nor to assume that
µf > 0; this was significant for setting up experiments.

It is intuitively clear that, for a function with Lipschitz gradient, a ‘large’ value
of the orthogonal component cannot decrease significantly and therefore change its
direction when we are close to the exact solution (of the auxiliary subproblem). On
the other hand, when this component is small and the auxiliary problem is solved on
a multidimensional parallelepiped Qk, we can choose this point to be the required
solution of the problem on Qk. We propose an approach to choosing accuracy for
auxiliary subproblems based on the above idea.

We start with a result on the necessary accuracy of the solution of auxiliary sub-
problems which guarantees that the required exact solution remains in the feasible
set after the removal of its parts in iterations of the method. In what follows we
let ∆ denote the accuracy of the solution of the auxiliary subproblems (part 9 in
Algorithm 6) with respect to the argument (part 10 in Algorithm 6).

Theorem 8. Assume that f is convex and has an Lf -Lipschitz gradient for Lf > 0
and that x is an approximate solution of the auxiliary subproblem obtained at some
iteration in the method. At each iteration let ν(x) = ∇f(x) and ν⊥Qk

(x) =(
ν(x)

)
⊥ , and let the approximation x satisfy

∆ ⩽
|ν⊥Qk

(x)|
Lf

.

Then the part of the feasible set remaining after each removal of a portion of it
contains the solution x∗ of the original problem on the hypercube.

The estimate in Theorem 8 can imply a very low rate of convergence of Algo-
rithm 6 if the projection of the gradient vector at any current point onto the
orthogonal complement of the subspace under consideration decreases rapidly with
approach to the solution point. For this reason we state a result with an alternative
stopping condition for auxiliary subproblems. We let Qk denote the subset (line
segment or part of a plane or a hyperplane) in the original hypercube Q on which
the auxiliary problem is solved.



Saddle-point problems: Low dimension of one group of variables 307

Theorem 9. Assume that f is a convex Mf -Lipschitz function with Lf -Lipschitz
gradient (Mf , Lf > 0). Then to attain accuracy ε (with respect to the function) of
the solution of problem (2.24) on the set Qx it suffices that

∆ ⩽
ε−R|ν⊥Qk

(x)|
Lf + MfR

for any approximate solution x ∈ Qk ⊂ Q, where R = a
√

n is the length of the
diagonal of the original hypercube Qx .

Here ε is the accuracy with respect to the function that is required for the
solution of the optimization problem on Qk, provided that the algorithm is at
the kth level of recursion, that is, it solves the auxiliary problem on Qk ⊂ Q.

Combining the above estimates we arrive at the following theorem for n = 2.

Theorem 10. Let f be a convex Mf -Lipschitz function with Lf -Lipschitz gradient
(Mf , Lf > 0). Assume that an inexact gradient ν(x) satisfying

∥∇f(x)− ν(x)∥2 ⩽ δ̃(x) (2.27)

is used at an arbitrary current point x in the implementation of the method. Then
for the part of the feasible set remaining after each removal of a portion of it to
contain the solution x∗ of the original problem on Q, it suffices that

Cf δ̃(x) + ∆ ⩽ max
{
|ν⊥Qk

(x)|
Lf

,
ε−R|ν⊥Qk

(x)|
Mf + LfR

}
(2.28)

hold for the solution x of the auxiliary minimization problem for f on Qk ,

where Cf = max
(

1
Lf

,
R

Mf + LfR

)
. In this case an approximation of the required

minimum with accuracy ε is attained after at most

N∗ :=
⌈
log2

(
4R(Mf + 2LfR)

Lfε

)⌉
(2.29)

iterations of Algorithm 6.

Note that the stopping criterion (2.28) applies to inner subproblems, whereas
the criterion for outer subproblems is the required number of iterations (2.29).

In addition, we note that, as the diameter of the part of the feasible set
remaining after the removal of hyperrectangles (in accordance with Algorithm 6)
is small, the estimate for the number of iterations guaranteeing ε-accuracy with
respect to the function takes the form

O

(
log2

(
ε−1 max

(
Mf ,

4(Mf + 2LfR)
Lf

)))
. (2.30)

Thus, at each level of recursion (for the hyperrectangle Q) we solve the auxiliary
problem until condition (2.28) is met. In the case when (2.28) also holds at some
point for the second argument of the maximum, this point is a solution of the
problem on Q. Nevertheless, if the problem on Q is in addition an auxiliary
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problem for some hyperrectangle Q1 of higher dimension, then the solution of
the problem at higher levels of recursion does not stop.

Now we switch to describing the theoretical results concerning estimates for the
convergence rate of the method proposed for strongly convex-concave saddle-point
problems of the form (2.21) with a sufficiently low dimension (up to five) of
one group of variables. Recall that we regard the original problem (2.21) as
a minimization problem for an auxiliary convex functional of max-type using an
inexact gradient at each iteration (the accuracy of finding it is controlled via
solving auxiliary minimization subproblems with respect to the other group of
variables). Note that, since Qx and Qy are compact sets, f satisfies the Lipschitz
condition in view of assumptions (2.22) and (2.23).

2.3.2. Complexity estimates for the algorithm for saddle-point problems using
the multidimensional dichotomy method in low-dimensional subproblems. To
minimize with respect to the low-dimensional variable x in problem (2.21) we
use the multidimensional dichotomy method (Algorithm 6) with inexact gradient
(gradient with additive noise). We describe necessary conditions on the accuracy
of the gradient of the objective functional that is used at each iteration. Note that
by the Demyanov-Danskin theorem (see [23])

∇f(x) = ∇xS(x,y(x)).

In what follows we assume that ν(x) = ∇xS(x,yδ̃), where yδ̃ is an approximation
of y(x) such that (2.27) holds. We consider two possible conditions for
computing yδ̃.

1. By virtue of the above assumptions on S,

∥ν(x)−∇f(x)∥2 ⩽ Lyx∥y(x)− yδ∥2.

Thus, to determine the remaining set correctly, it suffices that the inequality
(2.28) holds, where δ̃(x) = Lyx∥y(x)− yδ∥2.

The above method assumes that the inner subproblem of the problem can be
solved at a linear rate with any accuracy with respect to the argument. However,
if S(x,y) is µy-strongly concave with respect to y, then these conditions can be
replaced by convergence with respect to the function. In this case the auxiliary
problem with respect to y must be solved with any accuracy

δ ⩽
µy

2L2
yx

δ̃2 (2.31)

with respect to the argument
2. We can find another estimate for the necessary accuracy of the solution of

the auxiliary subproblems. Note that if yδ̃ is a solution of a maximization problem
of the form

f(x) = max
y∈Qy

S(x,y)

for fixed x with accuracy δ with respect to the function, then ν(x) is a δ-gradient
of f at x. By Theorem 1, if the distance of the current point x to the boundary of
the feasible set Qx is sufficiently large or, more precisely, ρ(x, ∂Q) ⩾ 2

√
δ/Lf , then

∥ν(x)−∇f(x)∥2 ⩽ 2
√

Lfδ.
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In this case, to identify the remaining set correctly it suffices to have (2.28)
for δ̃(x) = 2

√
Lfδ, where δ is the accuracy (with respect to the function) of the

solution yδ̃ of the auxiliary subproblem.
Then the auxiliary problem with respect to y must be solved with an accuracy

δ ⩽
2

Lf
δ̃2 (2.32)

with respect to the function.
Hence, at each step in the multidimensional dichotomy method we compute an

inexact gradient in accordance with (2.31) or (2.32).
Now we consider the auxiliary inner minimization problem with respect to the

high-dimensional variable. The strategy of solving the auxiliary minimization
problem with respect to the high-dimensional variable was described in § 2.2.3.
More precisely, for the auxiliary maximization subproblems with respect to
high-dimensional y we use the following methods depending on the class of
problems (conditions on h or S) we have chosen.

1. If h is prox-friendly (case 1), then we use the fast gradient method for
composite optimization problems (Algorithm 4).

2. If h has Lh-Lipschitz gradient (case 2), it is possible to use the accelerated
method with oracle complexity separation (Algorithm 2).

In these cases we obtain the following estimates for the number of calls of the
corresponding auxiliary subproblems that is sufficient to attain an ε-solution of
problem (2.21) in the sense of Definition 1:
• in case 1,

O

(
2n2

√
Lyy

µy
logn+1

2

(
CR

ε

))
rounds of calculation of ∇yF (x, y)

and solution of subproblem (2.7);

• in case 2,

O

(√
Lh

µy
logn+1

2

(
CR

ε

))
rounds of calculation of ∇h(y) and

O

(
2n2

(√
Lh

µy
+

√
Lyy

µy

)
logn+1

2

(
CR

ε

))
rounds of calculation of ∇yF (x, y).

Note that the stopping conditions for auxiliary subproblems are (2.31) and (2.32).
We also note that if the function is separable, like in § 2.2.3, then an ε-solution

of (2.21) is guaranteed attainable in r O

(
n ln

n

ε

)
rounds of calculation of ∇xF

and O

(
mn ln

n

ε
ln

m

ε

)
rounds of calculation of S(x, y) under weaker smoothness

conditions.
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§ 3. Results of computational experiments

3.1. Statements of the problems for which the computational efficiencies
of the proposed methods are compared. As an important class of saddle-point
problems, we can distinguish Lagrangian saddle-point problems associated with
convex programming problems. If such a problem involves two functional
constraints and Slater’s condition holds, then the dual maximization problem is
two-dimensional and the multidimensional dichotomy method (two-dimensional
case) is quite applicable to it upon localizing the feasible domain of the dual
variables. In addition, our results substantiate theoretically the linear rate of
convergence in the case of a smooth strongly convex functional and a convex
smooth functional constraint. The results are similar if, for example, the ellipsoid
method is applied to the dual problem. However, Nesterov’s method (see [16]) can
work faster is some situations even in the case of nonsmooth max-type functional
constraints, because there is no need to find the exact gradient of the objective
function at iterations.

We consider a problem of the form

max
λ

{
ϕ(λ) = min

x
F (x, λ)

}
. (3.1)

We seek an optimal point λ∗ using the multidimensional dichotomy method, by
solving the auxiliary minimization problem with respect to x at each step using
the fast gradient method. This was discussed in detail in § 2.3.1.

Below we distinguish several approaches examined in this paper, using which
problem (3.1) can be solved.

First, we can solve the primal problem by the ellipsoid method and the auxiliary
problem by the fast gradient method (see § 2.2, case 2).

Second, we can solve the problem by the fast gradient method with (δ, L)-oracle
(see [18], [24] and [25]), while solving the auxiliary problem by the ellipsoid method
(Algorithm 2).

Third, we can treat the problem under consideration using the multidimensional
dichotomy method, while solving the auxiliary problem by the fast gradient method
(see § 2.3, case 2).

Finally, the fourth way of applying our technique does not take account of the
low dimension of one of the variables but uses a variant of the fast gradient method
with (δ, L)-oracle of the objective function (see [18], [24] and [25]) for the outer
problem and the ordinary fast gradient method (FGM) for the inner subproblem.

It is worthy of noting that we considered strongly convex-concave saddle-point
problems of the form (1.1) in § 2. Nevertheless, the strong convexity of
low-dimensional optimization subproblems (to which we apply the cutting plane
methods or these authors’ version of the multidimensional dichotomy method) is
essential only for deducing theoretical complexity estimates.

Algorithms 2, 3 and 6 can be used in practice without the assumption of strong
convexity. In our experiments we managed to choose auxiliary parameters in the
above methods without these assumptions and to attain the desired quality of
the approximate solution without using the strong convexity of problem (1.1) with
respect to the variables of low dimension (in our case, these are the dual variables
in Lagrangian saddle-point problems). This explains why the experimental results



Saddle-point problems: Low dimension of one group of variables 311

presented in § 3.1 are correct despite the fact that the problems under consideration
are not strongly convex/concave (but only convex/concave) with respect to one
group of variables.

3.2. Lagrangian saddle-point problem associated with the quadratic
optimization problem. As a specific example for comparative computations,
we consider the constrained quadratic optimization problem

min
x∈Qr⊂Rn

gi(x)⩽0, i=1,...,m

{
f(x) :=

1
2
∥Ax− b∥22

}
, (3.2)

where A ∈ Rn×n, b ∈ Rn, Qr = {x | ∥x∥2 ⩽ r} is a Euclidean ball, and each
constraint gi(x) is linear:

gi(x) = ci⊤x + di, ci ∈ Rn, di ∈ R.

In what follows, for it to be possible to use the optimization method on a square
or a triangle, we work with two convex nonsmooth constraints g1 and g2 that
max-aggregate the original constraints:

g1(x) = max
{

gi(x)
∣∣∣∣ i = 1, . . . ,

⌊
m

2

⌋}
and

g2(x) = max
{

gi(x)
∣∣∣∣ i =

⌊
m

2

⌋
+ 1, . . . ,m

}
.

In such a statement with two constraints the original problem (3.2) has the dual
problem of the form

max
λ1+λ2⩽Ωλ

{
φ(λ1, λ2) := min

x∈Qr

{
f(x) + λ1g1(x) + λ2g2(x)

}}
,

where the constant Ωλ is estimated on the basis of Slater’s condition as follows:

Ωλ =
1
γ

f(x̂),

where γ = −max
{
g1(x̂), g2(x̂)

}
> 0 and x̂ is an interior point in the set specified

by the original constraints. Thus, along with the nonnegativeness of the dual
variables, we obtain that the set on which we solve the dual problem is a right
triangle with legs of length Ωλ lying on the coordinate axes.

Let A be a sparse matrix with proportion σ of nonzero entries, with random
uniformly distributed positive diagonal entries Aii ∝ U(0, 1.1) and random uni-
formly distributed nonzero nondiagonal entries Aij ̸= 0, Aij ∝ U(0, 1); ele-
ments of the vector b are independent uniformly distributed random vari-
ables bi ∝ U(0, 0.5); the vector ci and the scalar di, specifying the ith constraint,
are also randomly generated from the uniform distribution U(0, 0.1).
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We compare the running speeds of the two-dimensional dichotomy method (in
what follows, the optimization method on a square), the optimization method on
an (isosceles right) triangle (which is similar to the two-dimensional dichotomy
method) on the set Q =

{
x ∈ R2

++ | x1 + x2 ⩽ Ωλ

}
, the ellipsoid method and the

fast gradient method (FGM). We describe here a variant of the dichotomy method
on an isosceles right triangle that is used below. Each iteration in this method is
performed according to the following steps.

1. At the first iteration step, a separating line segment connecting the
midpoints of one leg and the hypotenuse is drawn (Fig. 1, a). Using
some one-dimensional optimization method (for example, the golden section
search method) the auxiliary minimization problem is solved on this
segment.

2. The gradient ∇f(x) is computed at the point x of the solution of the
auxiliary problem that we have obtained; then the part of the triangle into
which it points is cut off.

3. If a twice smaller triangle homothetic to the original one remains after the
cutoff, then we switch to the next iteration.

4. Otherwise, one of the two parts of the remaining trapezoid into which it
is partitioned by the segment connecting the midpoints of the hypotenuse
and the other leg of the original triangle is similarly cut off (Fig. 1, b).
If a triangle remains, then we switch to the next iteration. If a square
remains, then the two-dimensional dichotomy method is used for further
optimization.

Figure 1. An illustration of the description of the dichotomy method on
a triangle: (a) corresponds to the first step of the cutoff; (b) corresponds
to the second step of the cutoff.

As a stopping criterion for all methods compared in this subsection, we use the
condition

|λ1g1(xδ(λ)) + λ2g2(xδ(λ))| < ε,

where xδ(λ) is a solution of the auxiliary problem minx∈Q

{
f(x)+λ1g1(x)+λ2g2(x)

}
approximated with accuracy δ with respect to the function. The fulfillment of this
condition guarantees that the following accuracy with respect to the function is
attained for the solution of the original problem:

f(xδ(λ))− min
x∈Q

g1(x),g2(x)⩽0

f(x) ⩽ ε + δ.
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At each iteration the dual factors are positive because of domain chosen for their
localization (a triangle in the positive orthant), which eliminates the possibility of
an untimely fulfillment of this condition at the point 0.

The auxiliary minimization problem is solved by the subgradient method
(SubGM); see [26]. The number of iterations in the subgradient method is specified
experimentally so that an accuracy (with respect to the function) of δ = 0.005 is
attained at the point of the solution of the problem (in comparison with a solution
obtained after a large number of iterations of the method) and also so that the
values of the constraints g1 and g2 at these points are nonpositive. It turns out
that for n = 400, r = 5 and σ = 0.005 it suffices to perform 800 iterations using
the subgradient method, while for n = 1000, r = 2 and σ = 0.001, 2500 iterations
are sufficient.

As we can see from Table 2, which for different ε compares two methods for
n = 400 and m = 10 and m = 20, the optimization method on a triangle that
we propose attains the stopping criterion and thus the prescribed accuracy with
respect to the function in a smaller number of iterations and a lower running time
in comparison with the ellipsoid method.

Table 2. A comparison of two methods for n = 400

ε m
Method on a triangle Ellipsoid method

Iterations Time, ms Iterations Time, ms

0.5
10 4 687 8 820

20 4 818 8 1170

0.1
10 8 810 14 1300

20 8 1020 14 1390

0.05
10 12 1160 16 1460

20 14 1840 18 2140

0.01
10 22 3170 36 3530

20 26 3260 38 3770

It can be seen from Table 3, which compares these methods for n = 1000 and
m = 10, that the method on a triangle is more efficient than the ellipsoid one. The
running time of the optimization method on a triangle is somewhat lower than
that of the optimization method on a square, which is because the dual factors are
localized in a right triangle, and therefore the lengths of the segments on which
we need to solve the additional one-dimensional optimization problems at the first
iteration of the methods is less. In addition, the ellipsoid method requires a much
larger number of iterations and a much higher running time in comparison with
the other methods in the case of a problem with m constraints (not aggregated into
two constraints of max-type), due to an increase in the dimension of the problem
and higher time costs for performing matrix-vector operations. As we can see from
Table 3, the replacement of the subgradient method by the fast gradient method
in the auxiliary high-dimensional subproblem does not change the situation.
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Table 3. A comparison of three methods for n = 1000 and m = 10

ε
Method on a square Method on a triangle Ellipsoid method
Iterations Time, s Iterations Time, s Iterations Time, s

0.5 6 6.10 6 5.41 4 6.12
0.1 12 8.92 12 8.25 16 12.7
0.05 18 12.6 16 11.2 24 23.8
0.01 24 25.3 22 24.1 30 32.5

ε
Ellipsoid method (m =10, SubGM) Ellipsoid method (m =10, FGM)

Iterations Time, s Iterations Time, s
0.5 8 15.3 6 6.27
0.1 20 26.2 10 17.6
0.05 32 38.7 34 38.8
0.01 40 49.5 40 50.2

Table 4. The work of the fast gradient method for n = 1000 and m = 10

ε
FGM FGM (m = 10)

Iterations Time, s Iterations Time, s
0.5 10 10.8 12 12.3
0.1 16 20.6 16 22.9
0.05 22 34.1 22 34.8
0.01 28 36.9 32 37.3

We compare how the method on a triangle solves the outer problem in
comparison with the fast gradient method in the cases of two max-aggregated
constraints and m = 10 original constraints (Table 4). In both variants the fast
gradient method requires a larger number of iterations and a higher running time
for the same accuracy than the method on a triangle.

3.3. Lagrangian saddle-point problem associated with the LogSumExp
problem with linear functional constraints. We consider the LogSumExp
problem with ℓ2-regularization and the linear constraints

min
x∈Rm

{
log2

(
1 +

m∑
k=1

eαxk

)
+

µx

2
∥x∥22

}
,

Bx ⩽ c, B ∈ Rn×m, c ∈ Rn, α ∈ R.

We introduce the notation LSE(x) = log2

(
1 +

∑
k=1 meαxk

)
.

The Lagrangian of this problem can be expressed as

r(x) + F (x, y)− h(y),
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where

r(x) =
µx

2
∥x∥22, F (x, y) = log2

(
1 +

m∑
k=1

eαxk

)
+ y⊤Bx and h(y) = y⊤c.

Then the dual problem is a convex-concave saddle-point problem of the form

max
y∈Rn

+

min
x∈Rm

{
r(x) + F (x, y)− h(y)

}
. (3.3)

Note that the function r(x) in the above statement of the problem is prox-
friendly.

By Theorem 11 (see § 4.12),

y∗ ∈ Qy =
{

y ∈ Rn
+

∣∣∣∣ yk ⩽
f(x0)

γ

}
,

where x0 is an interior point in the polyhedron Bx⩽c and γ =mink

{
ck−[Bx]k

}
>0.

It is also straightforward to see that x must lie inside the ball Qx = BRx
(0) with

centre at the origin and some finite radius Rx. In fact, the value of the function at
the origin is s0 = S(0, y) = log2(m + 1)− y⊤c for any y ∈ Qy, and we can find x
such that the quadratic part with respect to x is above this value for any y ∈ Qy.

We discuss the parameters associated with the Lipschitz constants of the
gradients of the functions under consideration. For r and h these obviously are

Lr = µx and Lh = 0.

It is also evident that for the function F

Lxy = ∥B∥2Ry, Lyx = ∥B∥2Rx and Lyy = 0.

The constant Lxx (which we now compute) is the sum of the constants for the
LogSumExp problem and a linear function with respect to x, which is zero. The
Lipschitz constant of the gradient in the LogSumExp problem is the maximum
eigenvalue of the Hessian, which is α. Thus,

Lxx = LLSE = max
x

λ1∇2LSE(x) = α,

where LSE(x) = log2

(
1 +

∑m
k=1 eαxk

)
.

The parameters αk are generated by the uniform distribution U(−α0, α0),
α0 = 0.001. Entries of the matrix B are generated by the uniform distribution
U(−k, k), k = 103. The parameter µx is 0.001, and the components of the vector c
are equal to 1.

We clarify the stopping condition used in performing the experiments for the
methods compared. Note that if xδ(λ) is a solution with accuracy δ (with respect
to the function) of the problem

min
x∈Qx

{
f(x) + λ⊤g(x)

}
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and the additional condition

|λ⊤g(xδ(λ))| ⩽ ε (3.4)

holds, then xδ(λ) is an approximate solution of the minimization problem for f
with accuracy δ + ε with respect to the function, that is,

f(xδ(λ))− min
x∈Qx

f(x) ⩽ δ + ε.

In fact, we have

f(xδ(λ)) + λ⊤g(xδ(λ)) ⩽ f(x(λ)) + λ⊤g(x(λ)) + δ

⩽ ϕ(λ∗) + δ = f(x∗) + λ⊤∗ g(x∗) + δ = f(x∗).

The last transition is due to the Karush-Kuhn-Tucker condition, which asserts
that the complementary slackness condition λigi(x) = 0 for any i must be satisfied
at the point (λ∗, x(λ∗)).

So we can choose the stopping conditions{
|λ⊤g(xδ(λ))| ⩽ ε

2
,

gi(x) ⩽ 0 ∀ i : λi = 0.

The first condition guarantees accuracy ε with respect to the function f , as
already indicated above. The second condition is added because for λi = 0 the
value gi(x) of noncompliance with the condition can be arbitrarily large.

Using condition (3.4) to stop the work of the method when solving (3.3), we
compare the methods described above. Furthermore, we impose an additional
restriction on the running time of the method. If the time limit is exceeded before
the stopping condition is met, then the execution of the method is aborted and the
current result is returned. This limit is set to be 100 in our problems. A dash in
the corresponding tables means that the method could not stop in the allotted
time for these parameters.

The Python programming language (version 3.7.3) with the installed NumPy
library (version 1.18.3) was used for computations. The code was posted in
a repository on the GitHub platform (see [27]).

The results of experiments for dimension n = 2, 3, 4 with respect to the dual
variable are presented in Tables 5–7. These tables show the running time in the case
when the low-dimensional problem is solved by the fast gradient method (FGM)
or low-dimensional methods (such as the ellipsoid method with δ-subgradient or
the multidimensional dichotomy method described in this paper), whereas the
auxiliary high-dimensional problem is solved by the fast gradient method. The
best (least) value in a row (for fixed ε and m) is marked bold.

The case when the low-dimensional problem is auxiliary is not included in
the tables, since these methods do converge within the allocated time in all
experiments. We can conclude that in the case of constraints of low dimension it
is more economical to solve the low-dimensional problem as the primal one.

We discuss the results obtained. First, for all n = 2, 3, 4 we can see (from
Tables 5, 6, and 7, respectively) that the fast gradient method yields the best
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Table 5. A comparison of four methods for n = 2

ε m
Running time, s

FGM Ellipsoid method Dichotomy method Vaidya’s method

10−3 102 0.02 0.27 0.14 0.39
103 0.03 0.53 0.27 0.56
104 0.45 9.86 4.33 6.98

10−6 102 3.48 0.45 0.22 0.50
103 0.47 0.85 0.45 0.79
104 0.63 16.72 6.16 11.10

10−9 102 - 0.79 0.67 0.71
103 - 1.45 1.12 1.24
104 - 26.23 16.09 16.82

Table 6. A comparison of four methods for n = 3

ε m
Running time, s

FGM Ellipsoid method Dichotomy method Vaidya’s method

10−3 102 0.05 0.65 0.88 0.71
103 0.03 1.30 1.56 0.91
104 0.36 22.05 20.52 10.92

10−6 102 2.46 1.07 - 0.79
103 0.53 2.06 - 1.27
104 0.61 37.64 - 17.66

10−9 102 - 1.89 - 1.17
103 - 3.63 - 1.64
104 - 59.71 - 25.41

Table 7. A comparison of four methods for n = 4

ε m
Running time, s

FGM Ellipsoid method Dichotomy method Vaidya’s method

10−3 102 0.06 1.08 7.06 0.9
103 0.03 2.22 12.24 1.38
104 0.37 40.37 - 16.06

10−6 102 3.10 1.86 - 1.15
103 0.56 3.82 - 1.90
104 0.67 - - 25.03

10−9 102 - 3.42 - 2.01
103 - 6.20 - 2.83
104 - - - 33.12
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result in the case of a not very high required accuracy of ε = 10−3. In fact, it
is faster for this accuracy by at least an order of magnitude in comparison with
low-dimensional methods (the ellipsoid and dichotomy methods). On the other
hand, with the increase of the required accuracy the low-dimensional methods
become faster that the gradient method. For example, for n = 2 (Table 5) we see
that low-dimensional methods are faster than high-dimensional ones in the case of
ε = 10−9 for all dimensions m of the original problem.

Second, note that for n = 2 the proposed multidimensional dichotomy method
converges faster than the ellipsoid method and Vaidya’s method for all ε and m.
However, the complexity of this method increases very rapidly with dimension (see
the complexity estimate (2.25)), which also manifests itself in experiments. Even
for n = 3, that is, when the dimension increases by 1, it ceases to be efficient in
comparison with the other methods. For m > 2 and ε = 10−9 Vaidya’s method
performs better than the other methods in most tests.

Third, note the nature of the dependence of the running time on the dimension m
of the direct problem. For low-dimensional methods the running time grows faster
with m for fixed n and ε than for high-dimensional ones. One consequence is
that in our experiments for ε = 10−6 the low-dimensional minimization methods
we consider perform more efficiently in comparison with the fast gradient method
only for the low dimension m = 100.

3.4. Lagrangian saddle-point problem associated with the LogSumExp
problem with linear functional constraints and additive noise in the
gradient. Under the conditions of the previous example in § 3.3 we consider
a similar statement of problem (3.3) and solve it using the ellipsoid method for the
outer max-problem and the fast gradient method for the inner min-problem under
the additional condition that the gradient with respect to the variable y in the
outer problem is obtained when the corresponding oracle in Algorithm 2 is called
with some additive error. More precisely, instead of the exact gradient ∇yf(y) of
the function under the sign of the operator min, a vector v such that

∥∇yf(y)− v∥2 ⩽ ∆

is available. According to Remark 3, the ∆-additive inexactness of the gradient
can be taken into account as an additional δ-inexactness of the oracle in two ways:
uniformly, using the µ-strong convexity (which is the case for the problem under
consideration), or dynamically, by varying δ depending on the diameter of the
current ellipsoid, which is equal (in the notation of Algorithm 2) to

diamk = 2 · λ1/2
max(Hk),

where λmax is the largest eigenvalue of the matrix.
Another inexactness of the oracle in the method for the outer problem is

due to the fact that the solution of the inner problem by the fast gradient
method is approximate in this case. Assume that the inner method is tuned
to accuracy δFGM and executes the number of iterations that is enough to attain
this accuracy according to the theoretical estimates.
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Assume that the method for the outer problem, that is, the ellipsoid method,
runs until the stopping condition (3.4) is met. We assume that the method is
aimed at obtaining in the end an ε-solution of the general saddle-point problem.
Then, using the reasoning from the last example, we need to tune the stopping
condition in the ellipsoid method to accuracy ε − δFGM − δ, where δFGM is the
accuracy of the fast gradient method. This quantity depends on how we take
account of the additive inexactness of the gradient in the same way as the actual
time for meeting the stopping condition does. We examine this dependence.

Figure 2. The actual change in the stopping condition for the ellipsoid
method as applied to the Lagrangian saddle-point problem associated with
the LogSumExp problem.

In Figure 2 we plot the values of the left-hand side of (3.4) and ε− δFGM − δ for
two ways of taking account of the inexactness of the gradient in the particular case
of the problem when n = 3, m = 10, ε = 0.1, δ = 0.05, ∆ = 0.001 and µ = 0.0001.
As we can see, the diameters of the ellipsoids are decreasing in practice, and the
bound given by the stopping condition in the case when the inexactness of
the gradient is taken dynamically into account increases noticeably in comparison
with the growth of the values attained at the points generated by the method.
This can make it possible to reduce the number of iterations and the running time
of the method until this condition is met while preserving the guarantees of the
accuracy of the resulting solution.

3.5. The problem of projecting a point onto a set specified by a system
of smooth constraints. Now we consider the problem of projecting a point onto
a convex set with nontrivial structure specified by a system of quite a few inequality
constraints with smooth functions (see [8]). The projection arises as a subproblem
in many optimization algorithms that are used in their turn to solve constrained
problems. It is not always possible to project precisely with reasonable algorithmic
complexity. In this connection it makes sense to state the problem of finding
a projection with some accuracy, that is, the problem of finding an approximate
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solution of a problem of the form

min
x∈Rn

∥x0 − x∥22,

gi(x) ⩽ 0, gi is L-smooth ∀ i = 1, . . . ,m.

The Lagrangian saddle-point problem associated with this problem is as follows:

max
λ∈Rm

+

min
x∈Rn

{
∥x0 − x∥22 +

m∑
i=1

λigi(x)
}

.

In the case when the number of constraints m is small an efficient approach was
proposed in [8]; its algorithmic complexity depends linearly on the dimension
n. This approach is based on combining the ellipsoid (or Vaidya’s) method
with the fast gradient method. A similar approach described in our paper has
considerable distinctions, on the one hand, in its requirements for the accuracy of
the solution of the auxiliary min-problem (according to the analysis proposed, it
can be chosen to be ε/2; in the approach in [8] it is necessarily ∼ ε4) and, on the
other hand, in the stopping condition (3.4) used (which guarantees the prescribed
accuracy of the original direct problem), which can turn out to be met before the
theoretically sufficient number of iterations, thus providing significant convenience
for applications.

Table 8. A comparison of two methods for a system of m = 3 quadratic
constraints

ε

Running time, s
n = 200 n = 300

Ellipsoid method FPM Ellipsoid method FPM
10−1 2 13 2 15
10−2 3 54 12 70
10−4 16 119 29 178
10−5 30 171 45 271
10−6 33 210 47 336

Table 8 shows the running time for the approach proposed in this paper
(Algorithm 2) and the approach from [8] (Algorithm 4, Fast Projection
Method— FPM) in the case of m = 3 constraints of the form

gi(x) = (x− xi)⊤Ai(x− xi)− ri ⩽ 0,

where the matrices Ai are positive definite and are generated randomly with
entries in U(0, 0.05), the central points xi have independent random components in
U(−1, 1), and the ri are uniformly independently randomly generated by U(0, 0.1).
The resulting accuracy is verified in comparison with a solution obtained by one of
the methods tuned to have an accuracy of ε = 10−10 (both in terms of the direct
function: ∥x0−x∥22 ⩽ ∥x0−x∗∥22 + ε, and in terms of the constraints: gi(x) ⩽ ε for



Saddle-point problems: Low dimension of one group of variables 321

any i). As we can see, the approach described in this paper is considerably more
efficient in practice in the sense of running time because of the stopping condition
used and the reduced labour expenses for the auxiliary problems.

§ 4. Proofs and used results

4.1. Proof of Lemma 1. We present a proof from [17], pp. 123–124, which uses
the assumption that Qy is compact instead of the strong concavity of S with
respect to y.

Let ν ∈ ∂xS(x, ỹ). For any x′ ∈ Qx we have

ĝ(x′) = max
y∈Qy

S(x′, y) ⩾ S(x′, ỹ) ⩾ S(x, ỹ) + ⟨ν, x′ − x⟩ ⩾ ĝ(x) + ⟨ν, x′ − x⟩ − δ.

Thus, ν ∈ ∂δ ĝ(x), as required.

4.2. Proof of Theorem 1. Note that the (δ, L)-subgradient ∇δ,Lg(x) in the
definition (2.5) corresponds to a (2δ, L)-oracle of the form (g(x) − δ,∇δ,Lg(x))
in Definition 1 from [18], that is, the inequality

0 ⩽ g(y)−
(
g(x)− δ + ⟨∇δ,Lg(x), y − x⟩

)
⩽

L

2
∥y − x∥22 + 2δ

holds. It was proved in [18], § 2.2, that if ρ(x, ∂Qx) ⩾ 2
√

δ/L, then

∥∇δ,Lg(x)−∇g(x)∥ ⩽ 2
√

δL

for any subgradient ∇g(x), as required.

4.3. Proof of Lemma 2. The strong concavity of S with respect to y implies
that the maximization problem (2.3) has a unique solution for any x, which we
denote by y(x), and that

S(x, y) ⩽ S(x, y(x))︸ ︷︷ ︸
ĝ(x)

− µy

2
∥y − y(x)∥22

for any y ∈ Qy. In particular, if ỹ is an ε̃-solution of the inner problem (2.3), then

∥ỹ − y(x)∥22 ⩽
2
µy

ε̃. (4.1)

By the Demyanov-Danskin theorem (see [23] and [28]) the function ĝ is differentiable
at any point x ∈ Qx and its gradient is

∇ĝ(x) = ∇xS(x, y(x)). (4.2)

Using (2.6), (4.1) and (4.2) we obtain

∥∇xS(x, ỹ)−∇ĝ(x)∥2 ⩽ Lxy

√
2ε̃

µy
,

as required.
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4.4. Proof of Lemma 3. 1. For any x, x′ ∈ Q, ∇g(x) ∈ ∂g(x) and a δ1-inexact
subgradient ν at x we have

g(x′) ⩾ g(x) +
〈
∇g(x), x′ − x

〉
= g(x) +

〈
ν, x′ − x

〉
+

〈
∇g(x)− ν, x′ − x

〉
⩾ g(x) +

〈
ν, x′ − x

〉
− δ1 diam Q.

Hence a δ1-inexact subgradient ν is a δ2-subgradient of g at x with δ2 = δ1 diam Q.
2. For any x, x′ ∈ Q, ∇g(x) ∈ ∂g(x) and a δ1-inexact subgradient ν at x,

we have

g(x′) ⩾ g(x) +
〈
∇g(x), x′ − x

〉
+

µ

2
∥x′ − x∥22

= g(x) +
〈
ν, x′ − x

〉
+

〈
∇g(x)− ν, x′ − x

〉
+

µ

2
∥x′ − x∥22

⩾ g(x) +
〈
ν, x′ − x

〉
− δ1∥x′ − x∥2 +

µ

2
∥x′ − x∥22.

In view of the fact that

δ1∥x′ − x∥2 ⩽
µ

2
∥x′ − x∥22 +

δ2
1

2µ
,

we infer the inequality

g(x′) ⩾ g(x) + ⟨ν, x′ − x⟩ − δ2
1

2µ
.

Therefore, a δ1-inexact subgradient ν is a δ2-subgradient of g at x for δ2 = δ2
1/(2µ).

4.5. Proof of Lemma 4. If x∗ is an interior point, then the gradient with
respect to the nonfixed variables is zero because x∗ is a minimum point. In view
of the fact that ∇f(x∗) ∈ ∂f(x∗), we arrive at the assertion of the lemma.

Assume that x∗ is a boundary point. Then the set of conditional subgradients
on the hypercube Q is defined by

∂Qf(x) = ∂f(x) + N(x | Q),

where N(x | Q) =
{
a | ⟨a,y − x⟩ ⩽ 0 ∀y ∈ Q

}
.

In the case when the function is differentiable we have

∂f(x∗) = {∇f(x∗)}.

The fact that x∗ is a boundary point yields that there is a nonempty set of
coordinates {xj}j such that xj = maxy∈Qk

yj or xj = miny∈Qk
yj . We introduce

the notation

J+ =
{

j ∈ N
∣∣∣ xj = max

y∈Qk

yj

}
and J− =

{
j ∈ N

∣∣∣ xj = min
y∈Qk

yj

}
.

We note that any vector a such that aj ⩾ 0 for all j ∈ J+, aj ⩽ 0 for all j ∈ J−,
and aj = 0 otherwise lies in the normal cone.
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We also note that (∇f(x∗))j ⩽ 0 for any j ∈ J+, (∇f(x∗))j ⩾ 0 for any j ∈ J−,
and (∇f(x∗))j = 0 otherwise. To see this, if (∇f(x∗))j > 0 for some j ∈ J+, then
there exists a vector x = x∗ + αek ∈ Q for some α < 0 and ej

k = δkj , where δkj = 1
for k = j and δkj = 0 otherwise. The value of the function at this point satisfies
the inequality

f(x) = f(x∗) + α(∇f(x∗))j + o(α) < f(x∗)

for a sufficiently small α, which contradicts the fact that x∗ is a solution.
Choosing a such that a∥ = −

(
∇f(x∗)

)
∥, we find a subgradient from the

condition
g = ∇f(x∗) + a, g∥ = 0.

4.6. Proof of Theorem 3. In our method, like in the ordinary ellipsoid method,
an ellipsoid is cut at each step by a plane through its centre; after this the least-
volume ellipsoid containing one of the parts is considered. We can prove (see, for
example, [20]) that

vol(Ek+1)
vol(Ek)

⩽ e−1/(2n) =⇒ vol(EN ) ⩽ e−N/(2n) vol(BR) (4.3)

at each step. If wk = 0, then

g(x) ⩾ g(ck)− δ ∀x ∈ Qx =⇒ g(ck)− g(x∗) ⩽ δ

by the definition of a δ-subgradient, and the assumptions of the theorem are
fulfilled. Furthermore, we assume that the vector wk is zero. If ck ∈ Qx, then

(Ek \ Ek+1)∩Qx ⊆
{
x ∈ Qx : ⟨wk, x− ck⟩ > 0

}
⊆

{
x ∈ Qx : g(x) > g(ck)− δ

}
(4.4)

due to the definition of a δ-subgradient. We consider the set Qε
x := {(1− ε)x∗ + εx,

x ∈ Qx} for ε ∈ [0, 1]. Note that Qε
x ⊆ E0 and

vol(Qε
x) = εn vol(Qx) ⩾ εn vol(Bρ) =

(
ερ

R

)n

vol(BR).

For ε > e−N/(2n2)R
ρ

relation (4.3) implies the inequality vol(Qε
x) > vol(EN ).

Therefore, there are a step j ∈ {0, . . . , N − 1} and a point xε ∈ Qε
x such that

xε ∈ Ej and xε /∈ Ej+1. If the point cj lay outside Qx, then we would cut off
a part of Ej disjoint from Qx, which would result in a contradiction with the
inclusion xε ∈ Qx. Hence cj ∈ Qx. Then using (4.4) we obtain the inequality
g(xε) > g(cj)− δ. Since there is x ∈ Qx such that xε = (1− ε)x∗ + εx, we have

g(xε) ⩽ (1− ε)g(x∗) + εg(x) ⩽ (1− ε)g(x∗) + ε
(
(g(x∗) + B

)
= g(x∗) + Bε

because g is convex.
We deduce that

g(cj) < g(x∗) + Bε + δ ∀ ε > e−N/(2n2)R
ρ

=⇒ g(cj)− g(x∗) ⩽ e−N/(2n2) BR
ρ

+ δ, (4.5)



324 M. S. Alkousa, A.V. Gasnikov, E. L. Gladin et al.

which implies (2.9). As for Corollary 1, if, in addition, g is µ-strongly convex, that
is,

g(x)− g(x′)− ⟨∇g(x′), x− x′⟩ ⩾
µ

2
∥x− x′∥22 ∀x, x′ ∈ Qx,

then, substituting in x = cj and x′ = x∗ and using ⟨∇g(x∗), x−x′∗⟩ for any x ∈ Qx,
we obtain

g(cj)− g(x∗) ⩾
µ

2
∥cj − x∗∥22.

In view of (4.5), this yields the second required assertion, inequality (2.10).

4.7. Proof of Theorem 6. Assume that we solve a problem of the form

min
x

f(x). (4.6)

We estimate the complexity of the multidimensional dichotomy method (that is,
the number of calls of the subroutine for computing the gradient ∇f that is
sufficient to attain an ε-exact solution with respect to the function).

The proof of this theorem uses the following estimate, substantiated
in Theorem 10, for the number of outer iterations required to attain an acceptable
quality of an approximate solution of the minimization problem for f :

N =
⌈
log2

(
4R(Mf + 2LfR)

Lfε

)⌉
.

Let T (n, R, ε) be the number of auxiliary minimization problems for the
corresponding function of dimension n− 1 that are sufficient to solve the problem
of dimension n on a hypercube of diameter R with accuracy ε. For n = 0 we set
T (0, R, ε). Note that one iteration requires solving n auxiliary problems. In view
of this fact, we obtain a recurrence formula for the primal problem:

T (n, R, ε) =
⌈log2(Mf R/ε)⌉∑

k=0

nT (n− 1, R · 2−k, ε̃)

and we obtain a similar expression by taking account of all necessary auxiliary
subproblems:

T (n, R, ε) =
⌈log2(C1R/ε)⌉∑

k=0

nT (n− 1, R · 2−k, ε̃),

where ε̃ is specified according to (2.26) and

C1 = max
(

Mf ,
4(Mf + 2LfR)

Lf

)
.

Let Cε = 128L2
f/µf . Using induction on n we prove the estimate

T (n, R, ε) ⩽ 2(n2+n)/2 logn
2

(
CR

ε

)
+O

(
logn

2

(
CR

ε

))
, where C = 2max(C1, Cε).

(4.7)
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In the above notation, the coefficient 2 in the expression for C makes it possible to
avoid indicating or rounding-ups in what follows.

The base case of induction is obvious:

T (1, R, ε) = log2

C1

ε
⩽ log2

(
CR

ε

)
.

Assume that (4.7) is valid for some dimension n. We prove that (4.7) is also
valid for n + 1:

T (n + 1, R, ε) =
⌈log2(C1R/ε)⌉∑

k=0

(n + 1)T (n, R · 2−k, ε̃)

⩽ (n + 1) · 2(n2+n)/2

⌈log2(C1R/ε)⌉∑
k=0

logn
2

(
CCεR

2

22kε2

)
+ O

(
logn

2

(
CR

ε

))
.

We estimate the sum
⌈log2(C1R/ε)⌉∑

k=0

logn
2

(
CCεR

2

22kε2

)
⩽
⌈log2(CR/ε)⌉∑

k=0

logn
2

(
C2R2

22kε2

)

⩽ 2n ·
∫ log2(CR/ε)+1

0

(
log2

(
CR

ε

)
− k

)n

dk + logn
2

(
CR

ε

)
=

2n

n + 1

(
logn+1

2

(
CR

ε

)
+ 1

)
+ logn

2

(
CR

ε

)
.

Therefore,

T (n + 1, R, ε) ⩽ 2((n+1)2+(n+1))/2 logn+1
2

(
CR

ε

)
+ O

(
logn

2

(
CR

ε

))
,

which yields the required estimate (4.7). Finally we conclude that the following
number of iterations of the inexact gradient ν(x) is sufficient to solve problem (4.6):

O

(
2n2

logn
2

(
CR

ε

))
, where C = max

(
Mf ,

4(Mf + 2LfR)
Lf

,
128L2

f

µf

)
.

Furthermore, we solve any auxiliary problem for the current level of recursion with
accuracy

δ̃ =
∆
Cf

⩾ 2−N

with respect to the argument (see (2.27)), where N is equal to N∗ from the
assertion of Theorem 10.

4.8. Proof of Theorem 7. It was proved in [16] that, given a hypercube Q
with maximum distance between its points equal to R, when we need to minimize
a function on it with accuracy ε, it suffices to solve the auxiliary problem in the
framework of the method with accuracy

∆ ⩽
ε

8LfR
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(with respect to the argument), where R is the size of the original hypercube.
This theorem was proved for dimension n = 2 in [16]; however, it can easily be
generalized to higher dimensions. If f is a µf -strongly convex function, then we
deduce, using the above stopping condition, that it suffices to solve the auxiliary
problem with accuracy

ε̃ ⩽
µfε2

128L2
fR2

(with respect to the function).

4.9. Proof of Theorem 8. In what follows we will need the obvious relation

∀ a, b ∈ R |a− b| ⩽ |b| =⇒ ab ⩾ 0. (4.8)

Note that the set Qk at the kth iteration is chosen correctly if the sign of the
derivative with respect to a fixed variable in the solution of the auxiliary problem
coincides with the sign of this derivative in the approximate solution.

Let ν(x) = ∇f(x). It follows from (4.8) that for the signs of ν⊥Qk
(x∗) and

ν⊥Qk
(x) to be the same, it suffices to have∣∣ν⊥Qk

(x∗)− ν⊥Qk
(x)

∣∣ ⩽ |ν⊥Qk
(x)|,

where ν⊥Qk
(x) is the projection of ν(x) onto the orthogonal complement of the

set on which the auxiliary problem is solved.
Using the Lipschitz property of the gradient of the objective functional f we

obtain the assertion of the theorem.

4.10. Proof of Theorem 9. From Lemma 4 we obtain

g ∈ ∂Qf(x∗) : g∥ = 0.

By the definition of a subgradient of f at x∗,

f(x∗)− f(x∗) ⩾ ⟨g,x∗ − x∗⟩.

We use the Cauchy-Bunyakovsky-Schwarz inequality and arrive at the inequality

f(x∗)− f(x∗) ⩽ ∥g∥2a
√

n.

On the other hand, from the Lipschitz condition for f we derive that

f(x)− f(x∗) ⩽ Mf∆

and
f(x)− f(x∗) ⩽ Mf∆ + ∥g∥2a

√
n = Mf∆ + |ν⊥Qk

(x∗)|R

for any x in the ∆-neighbourhood of x∗. In view of the Lipschitz property of the
gradient of f ,

f(x)− f(x∗) ⩽ Mf∆ +
(
|ν⊥Qk

(x)|+ Lf∆
)
R.
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Assume that a set of diameter ∆ remains in the auxiliary problem after steps
11–15 of Algorithm 6. Then to attain accuracy ε with respect to the function in
the original problem, it suffices that

Mf∆ + ∥g∥2a
√

n = Mf∆ +
(
|f ′⊥(x)|+ Lf∆

)
R ⩽ ε,

∆(Mf + LfR) ⩽ ε− |f ′⊥(x)|R

at some point x in this set.
Finally, we obtain

∆ ⩽
ε−R|f ′⊥(x)|
Mf + LfR

.

4.11. Proof of Theorem 10. Combining the estimates from Theorems 8 and 9,
we conclude that to attain accuracy ε with respect to the function in the solution
of the minimization problem on the hypercube Q, we must solve each auxiliary
problem until the following condition on the distance between the approximate
and exact solutions of this problem is satisfied:

∆ ⩽ max
{
|ν⊥Qk

(x)|
Lf

,
ε−R|ν⊥Qk

(x)|
Mf + LfR

}
. (4.9)

This condition holds for ν(x) = ∇f(x). Assume that ν(x) is a vector such that

∥∇f(x)− ν(x)∥2 ⩽ δ̃(x).

In this case it is obvious that (4.9) holds if

Cf δ̃(x) + ∆ ⩽ max
{
|ν⊥Qk

(x)|
Lf

,
ε−R|ν⊥Qk

(x)|
Mf + LfR

}
,

where
Cf = max

(
1

Lf
,

R

Mf + LfR

)
.

We estimate the necessary number of iterations. If the auxiliary problem at

the current level of recursion is solved with accuracy δ̃ =
1

Cf
∆, then we obtain

the condition
∆ ⩽

1
2

max
{
|ν⊥Qk

(x)|
Lf

,
ε−R|ν⊥Qk

(x)|
Mf + LfR

}
.

Assume that the absolute value of the orthogonal component of the gradient
approximation |ν⊥Qk

(x∗)| is q. We denote its approximation with accuracy ∆ with
respect to the argument by x∆.

After N iterations of the multidimensional dichotomy method as applied to the
auxiliary problem, using the Lipschitz property of the gradient with constant Lf

we can derive the following estimate for the gradient at the point x∆:

q − 2LfR · 2−N ⩽ |ν⊥Qk
(x)| ⩽ q + 2LfR · 2−N .

This inequality takes into account the fact that the size of the set reduces by
a factor of 2N after N dichotomy iterations, that is, ∆ ⩽ 2−NR after N iterations.
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Hence, for the condition ∆ ⩽
1
2
|ν⊥Qk

(x)|
Lf

to be satisfied, it suffices that

R · 2−N ⩽
q − 2LfR · 2−N

2Lf
.

For the second inequality ∆ ⩽
1
2

ε−R|ν⊥Qk
(x)|

Mf + LfR
we obtain a similar condition:

R · 2−N ⩽
1
2

ε− qR

Mf + LfR
−R · 2−N .

Then we arrive at the following estimate for N :

R · 2−N ⩽
1
4

min
q⩾0

max
(

q

Lf
,

ε− qR

Mf + LfR

)
=

1
4

Lf

Mf + 2LfR
· ε.

Thus, the number of iterations in the original algorithm that is needed to attain
the required accuracy in the auxiliary problems does not exceed the quantity

N =
⌈
log2

(
4R(Mf + 2LfR)

Lfε

)⌉
.

4.12. The statements of some known auxiliary results.

Theorem 11 (see [22], Exercise 4.1). Consider the problem

min
x∈Rm

f(x) with g(x) ⩽ 0, g : Rm → Rn,

where f and the gi are convex functions. The Lagrangian of this problem has the
form

ϕ(y) = min
x

{
f(x) + y⊤g(x)

}
.

Assume that x0 is a point such that g(x0) < 0. Then the solution y∗ of the problem
maxy ϕ(y) satisfies the inequality

∥y∗∥2 ⩽
1
γ

(
f(x0)−min

x
f(x)

)
,

where γ = mink{−gk(x0)}.

§ 5. Conclusions

In this research we have obtained complexity estimates for strongly convex-
concave saddle-point problems of the form

min
x∈Qx

max
y∈Qy

{
S(x, y) := r(x) + F (x, y)− h(y)

}
(5.1)

in the case when one group of variables (x or y) has a high dimension, while the
other one has a low dimension (several dozens).
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The first two proposed approaches to problems of this type are based on the
use of cutting plane methods (the ellipsoid or Vaidya’s method) for a convex
minimization (concave maximization) problem for the group of variables of low
dimension. We describe both variants, involving the ellipsoid method and involving
Vaidya’s method, since each of them has advantages of its own: Vaidya’s method
leads to a better estimate for the number of iterations, whereas the ellipsoid
method results in a lower complexity of iterations. In the case when the outer
subproblem has a low dimension, it is important to use these methods in these
authors’ version, replacing the ordinary subgradient by a δ-subgradient (note that
a δ-inexact subgradient can be also used here and complexity estimates in this
case are asymptotically the same as ε → 0). It is proposed to solve the auxiliary
optimization subproblems with respect to the group of variables of high dimension
by using accelerated gradient methods. This scheme has made it possible to infer
acceptable complexity estimates which depend on both the conditioning of the
objective function and the dimension of the space (see Theorem 2 and § 2.2.3).

Note that the first approach (when x is of low dimension) can also be applied to
the case when y is of low dimension by writing an analogue of problem (5.1) in the
form

min
y∈Qy

max
x∈Qx

{
h(y)− F (x, y)− r(x)

}
. (5.2)

Recall that the function r is assumed to be prox-friendly, which means that we
can explicitly solve the subproblem

min
x∈Qx

{
⟨c1, x⟩+ r(x) + c2∥x∥22

}
, c1 ∈ Qx, c2 > 0. (5.3)

Table 9 shows the number of operations needed to solve problem (5.2) with
accuracy ε with respect to y (Approach 1) or to solve the similar problem (5.1)
with accuracy ε with respect to x (Approach 2).

Table 9. A comparison of the numbers of operations in Approaches 1 and 2

Approach 1 Approach 2 Operation

O
(
m ln

m

ε

)
O

(
m

√
Lxx

µx
+

2L2
xy

µxµy
ln

m

ε
ln

1

ε

) rounds of calculation
of ∇yF and ∇h

O

(
m

√
Lxx

µx
ln

m

ε
ln

1

ε

)
O

(√
Lxx

µx
+

2L2
xy

µxµy
ln

1

ε

) rounds of calculation
of ∇xF and solution

of problem (5.3)

According to Table 9, the second approach loses to the first approach in most
cases. Nevertheless, in the case when

m ln m ≫

√
Lxx

µx
+

2L2
xy

µxµy

and the computation of ∇xF and solution of problem (5.3) are laborious, the
second approach can turn out to be more efficient.
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In addition to cutting plane methods with inexact δ-subgradient, this paper also
proposes an analogue of the dichotomy method for the solution of low-dimensional
convex optimization problems using inexact gradients in iterations. This is
called the multidimensional dichotomy method. In fact, it is a generalization of
the ordinary (one-dimensional) dichotomy method to minimization problems for
functions of n variables. It has turned out that using this approach in very
low-dimensional problems is quite reasonable. Conditions for the solution of the
auxiliary problem were presented, and the convergence of the method is proved
when these conditions hold at each step. In addition, an estimate is obtained
for the number of iterations that is sufficient for the required accuracy with
respect to the function (Theorem 6). This estimate depends on the dimension of
the space (this dependence is comparable with O(2n2

)) and also on the required
accuracy of the solution (this dependence has the form O(logn

2 (1/ε))). This result
looks much worse than the estimates for the ellipsoid method with δ-subgradients
described above. However, our computational experiments showed that the
proposed multidimensional dichotomy method can perform more efficiently than
the ellipsoid method for n = 2, which corresponds to the case of two constraints
in the direct problem.

Based on experiments, we have compared the dichotomy method, the fast
gradient method with (δ, L)-oracle, and the ellipsoid of Vaidya’s method using
δ-subgradients on saddle-point problems with low dimension of one of the variables.
More precisely, we have performed experiments for the dual problem of the
LogSumExp problem of minimizing a function with ℓ2-regularization in dimension
m and with n linear constraints. As a result of experiments, we have established
the following.

First, low-dimensional methods are faster than the fast gradient method in the
case of a high required accuracy. Under our conditions, this is an accuracy of
ε = 10−9.

Second, the multidimensional dichotomy method is faster than the ellipsoid
method for n = 2. However, its running time grows critically with dimension, and
its efficiently decreases significantly even for n = 3.

Third, it has been established that the running time of the fast gradient method
for this problem does not grow as strongly with m as in the case of the ellipsoid
method or the multidimensional dichotomy method.

In addition, we have compared the multidimensional dichotomy method, the
cutting plane methods considered in this paper (the ellipsoid method and Vaidya’s
method) and the fast gradient method on the problem of the minimization of
a quadratic function (for n = 400 and n = 1000) with two nonsmooth constraints
max-aggregating several (m = 10, 20) linear constraints. For this problem the
running time of the dichotomy method and its variants (the method on a triangle)
has turned out to be less than that of the ellipsoid method (both with the original
and aggregated constraints) and fast gradient method. We have compared different
ways of taking account of inexactnesses occurring in the presence of additive noise
in the values of the gradient in the case when the ellipsoid method is applied
to the low-dimensional problem. When the inexactness varies with the diameter
of the current ellipsoid, the method in question meets the stopping condition more
rapidly than in the case of a constant inexactness estimate. Different methods
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have also been compared for the problem of projecting a point onto a set specified
by a system of smooth functional constraints (see [8]). Our approach of applying
the ellipsoid method to subproblems of low dimension while using the proposed
stopping condition turns out to be more efficient in comparison with the algorithm
in [8] for a similar problem. In the framework of the above computational
experiments, we considered problem statements when the low-dimensional problem
(in this case, with respect to the dual variables of the Lagrangian saddle-point
problem) was not strongly convex (concave). Despite the fact that this paper
gives a theoretical analysis of estimates for the running speeds of the methods in
question only for strongly convex-concave problems, tuning the methods adequately
makes it possible in practice to apply the schemes proposed to merely convex (or
concave) low-dimensional subproblems with the same success and with guarantees
of attaining the required quality of the solution of the problem. This is explained
by the lack of necessity to assume the strong convexity (concavity) of the objective
function (it is only of importance for theoretical estimates) to implement all
methods applied to low-dimensional subproblems in this paper.
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