Публикации
2024
Eduard Gorbunov, Abdurakhmon Sadiev, Marina Danilova, Samuel Horváth, Gauthier Gidel, Pavel Dvurechensky, Alexander Gasnikov, Peter Richtárik. High-Probability Convergence for Composite and Distributed Stochastic Minimization and Variational Inequalities with Heavy-Tailed Noise (2024) Scopus DOI
Puchkin, N., Gorbunov, E., Kutuzov, N., Gasnikov, A. Breaking the Heavy-Tailed Noise Barrier in Stochastic Optimization Problems (2024) Proceedings of Machine Learning Research, 238, pp. 856-864. Scopus
Nazykov, R., Shestakov, A., Solodkin, V., Beznosikov, A., Gidel, G., Gasnikov, A. Stochastic Frank-Wolfe: Unified Analysis and Zoo of Special Cases (2024) Proceedings of Machine Learning Research, 238, pp. 4870-4878. Scopus
Aleksandr Lobanov, Alexander Gasnikov, Eduard Gorbunov, Martin Takáč. Linear Convergence Rate in Convex Setup is Possible! Gradient Descent Method Variants under (L_0,L_1)-Smoothness (2025)
Ilya Kuruzov, Gesualdo Scutari, Alexander Gasnikov. Achieving linear convergence with parameter-free algorithms in decentralized optimization (2024) Advances in Neural Information Processing Systems
Artem Agafonov, Petr Ostroukhov, Roman Mozhaev, Konstantin Yakovlev, Eduard Gorbunov, Martin Takác, Alexander Gasnikov, Dmitry Kamzolov. Exploring jacobian inexactness in second-order methods for variational inequalities: lower bounds, optimal algorithms and quasi-newton approximations (2024) Advances in Neural Information Processing Systems
Nikita Kornilov, Petr Mokrov, Alexander Gasnikov, Aleksandr Korotin. Optimal flow matching: Learning straight trajectories in just one step (2024) Advances in Neural Information Processing Systems
A. Gasnikov, V. Temlyakov. Some lower bounds for optimal sampling recovery of functions with mixed smoothness (2024)
V.N. Smirnov, K.M. Kazistova, I.A. Sudakov, V. Leplat, A.V. Gasnikov, A.V. Lobanov. Ruppert-Polyak averaging for Stochastic Order Oracle (2024)