Публикации

Показать фильтр

2018

Gasnikov, A.V., Kovalev, D.A. A hypothesis about the rate of global convergence for optimal methods (Newton's type) in smooth convex optimization (2018) Computer Research and Modeling, 10 (3), pp. 305-314. Scopus DOI Q4

Dvurechensky, P.E., Gasnikov, A.V., Lagunovskaya, A.A. Parallel Algorithms and Probability of Large Deviation for Stochastic Convex Optimization Problems (2018) Numerical Analysis and Applications, 11 (1), pp. 33-37. Scopus DOI Q4

Gasnikov, A.V., Dvurechensky, P.E., Zhukovskii, M.E., Kim, S.V., Plaunov, S.S., Smirnov, D.A., Noskov, F.A. About the Power Law of the PageRank Vector Component Distribution. Part 2. The Buckley–Osthus Model, Verification of the Power Law for This Model, and Setup of Real Search Engines (2018) Numerical Analysis and Applications, 11 (1), pp. 16-32. Scopus DOI Q4

Uribe, C.A., Dvinskikh, D., Dvurechensky, P., Gasnikov, A., Nedic, A. Distributed Computation of Wasserstein Barycenters over Networks (2018) Proceedings of the IEEE Conference on Decision and Control, 2018-December, статья № 8619160, pp. 6544-6549. Scopus DOI

Dvurechensky, P., Dvinskikh, D., Gasnikov, A., Uribe, C.A., Nedić, A. Decentralize and randomize: Faster algorithm for Wasserstein barycenters (2018) Advances in Neural Information Processing Systems, 2018-December, pp. 10760-10770. Scopus DOI

Dvurechensky, P., Gasnikov, A., Kroshnin, A. Computational Optimal Transport: Complexity by Accelerated Gradient Descent Is Better Than by Sinkhorn's Algorithm (2018) 35th International Conference on Machine Learning, ICML 2018, 3, pp. 2196-2220. Scopus DOI

2017

Anikin, A.S., Gasnikov, A.V., Dvurechensky, P.E., Tyurin, A.I., Chernov, A.V. Dual approaches to the minimization of strongly convex functionals with a simple structure under affine constraints (2017) Computational Mathematics and Mathematical Physics, 57 (8), pp. 1262-1276. Scopus DOI Q2

Gasnikov, A.V., Krymova, E.A., Lagunovskaya, A.A., Usmanova, I.N., Fedorenko, F.A. Stochastic online optimization. Single-point and multi-point non-linear multi-armed bandits. Convex and strongly-convex case (2017) Automation and Remote Control, 78 (2), pp. 224-234. Scopus DOI Q3

Gasnikov, A.V., Gasnikova, E.V., Dvurechensky, P.E., Mohammed, A.A.M., Chernousova, E.O. About the Power Law of the PageRank Vector Component Distribution. Part 1. Numerical Methods for Finding the PageRank Vector (2017) Numerical Analysis and Applications, 10 (4), pp. 299-312. Scopus DOI Q4

2016

Dvurechensky, P., Gasnikov, A. Stochastic Intermediate Gradient Method for Convex Problems with Stochastic Inexact Oracle (2016) Journal of Optimization Theory and Applications, 171 (1), pp. 121-145. Scopus DOI Q1

Gasnikov, A.V., Lagunovskaya, A.A., Usmanova, I.N., Fedorenko, F.A. Gradient-free proximal methods with inexact oracle for convex stochastic nonsmooth optimization problems on the simplex (2016) Automation and Remote Control, 77 (11), pp. 2018-2034. Scopus DOI Q2

Gasnikov, A.V., Gasnikova, E.B., Nesterov, Y.E., Chernov, A.V. Efficient numerical methods for entropy-linear programming problems (2016) Computational Mathematics and Mathematical Physics, 56 (4), pp. 514-524. Scopus DOI Q2

Chernov, A., Dvurechensky, P., Gasnikov, A. Fast primal-dual gradient method for strongly convex minimization problems with linear constraints (2016) Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9869 LNCS, pp. 391-403. Scopus DOI Q3

Dvurechensky, P., Gasnikov, A., Gasnikova, E., Matsievsky, S., Rodomanov, A., Usik, I. Primal-dual method for searching equilibrium in hierarchical congestion population games (2016) CEUR Workshop Proceedings, 1623, pp. 584-595. Scopus DOI

Bogolubsky, L., Gusev, G., Raigorodskii, A., Tikhonov, A., Zhukovskii, M., Dvurechensky, P., Gasnikov, A., Nesterov, Y. Learning Supervised pagerank with gradient-based and gradient-free optimization methods (2016) Advances in Neural Information Processing Systems, pp. 4914-4922. Scopus DOI

Используя этот сайт, вы соглашаетесь с тем, что мы используем файлы cookie.