Alkousa Mohammad

Candidate of Physical and Mathematical Sciences

Born on October 10, 1984

Публикации

2023

Alkousa, M.S., Gasnikov, A.V., Gladin, E.L., Kuruzov, I.A., Pasechnyuk, D.A., Stonyakin, F.S. Solving strongly convex-concave composite saddle-point problems with low dimension of one group of variables (2023) Sbornik Mathematics, 214 (3), pp. 285-333. Scopus DOI Q2

Savchuk, O., Stonyakin, F., Alkousa, M., Zabirova, R., Titov, A., Gasnikov, A. Online Optimization Problems with Functional Constraints Under Relative Lipschitz Continuity and Relative Strong Convexity Conditions (2023) Communications in Computer and Information Science, 1881 CCIS, pp. 29-43. Scopus DOI Q4

2022

Stonyakin F. , Gasnikov A. , Dvurechensky P. , Titov A. , Alkousa M. Generalized Mirror Prox Algorithm for Monotone Variational Inequalities: Universality and Inexact Oracle // Journal of Optimization Theory and Applications, Vol. 194, No. 3, P. 988 - 1013 Scopus WOS DOI Q1

Ablaev, S.S., Titov, A.A., Stonyakin, F.S., Alkousa, M.S., Gasnikov, A. Some Adaptive First-Order Methods for Variational Inequalities with Relatively Strongly Monotone Operators and Generalized Smoothness (2022) Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 13781 LNCS, pp. 135-150. Scopus WOS DOI Q2

Alkousa M.S., Gasnikov A.V., Dvurechensky P.E., Sadiev A.A., Razouk L.Ya. An approach for the nonconvex uniformly concave structured saddle point problem // Computer Research and Modeling, Vol. 14, No. 2, P. 225 - 237 Scopus WOS DOI Q4

2021

Gladin, E., Alkousa, M., Gasnikov, A. Solving Convex Min-Min Problems with Smoothness and Strong Convexity in One Group of Variables and Low Dimension in the Other // Automation and Remote Control, 82 (10), pp. 1679-1691. Scopus DOI Q3

Gladin, E., Sadiev, A., Gasnikov, A., Dvurechensky, P., Beznosikov, A., Alkousa, M. Solving Smooth Min-Min and Min-Max Problems by Mixed Oracle Algorithms (2021) Communications in Computer and Information Science, 1476 CCIS, pp. 19-40. Scopus DOI Q4

Titov, A.A., Stonyakin, F.S., Alkousa, M.S., Gasnikov, A.V. Algorithms for Solving Variational Inequalities and Saddle Point Problems with Some Generalizations of Lipschitz Property for Operators (2021) Communications in Computer and Information Science, 1476 CCIS, pp. 86-101. Scopus DOI Q4

2020

Alkousa, M.S., Gasnikov, A.V., Dvinskikh, D.M., Kovalev, D.A., Stonyakin, F.S. Accelerated Methods for Saddle-Point Problem (2020) Computational Mathematics and Mathematical Physics, 60 (11), pp. 1787-1809. Scopus DOI Q2

Titov, A.A., Stonyakin, F.S., Alkousa, M.S., Ablaev, S.S., Gasnikov, A.V. Analogues of Switching Subgradient Schemes for Relatively Lipschitz-Continuous Convex Programming Problems (2020) Communications in Computer and Information Science, 1275 CCIS, pp. 133-149. Scopus WOS DOI Q4

2019

Gasnikov, A.V., Gorbunov, E.A., Kovalev, D.A., Mokhammed, A.A.M., Chernousova, E.O. Reachability of Optimal Convergence Rate Estimates for High-Order Numerical Convex Optimization Methods (2019) Doklady Mathematics, 99 (1), pp. 91-94. Scopus DOI Q2

Titov, A.A., Stonyakin, F.S., Gasnikov, A.V., Alkousa, M.S. Mirror descent and constrained online optimization problems (2019) Communications in Computer and Information Science, 974, pp. 64-78. Scopus DOI Q4

2018

Gasnikov, A.V., Gorbunov, E.A., Kovalev, D.A., Mohammed, A.A.M., Chernousova, E.O. The global rate of convergence for optimal tensor methods in smooth convex optimization [Обоснование гипотезы об оптимальных оценках скорости сходимости численных методов выпуклой оптимизации высоких порядков] (2018) Computer Research and Modeling, 10 (6), pp. 737-753. Scopus DOI Q4

2017

Gasnikov, A.V., Gasnikova, E.V., Dvurechensky, P.E., Mohammed, A.A.M., Chernousova, E.O. About the Power Law of the PageRank Vector Component Distribution. Part 1. Numerical Methods for Finding the PageRank Vector (2017) Numerical Analysis and Applications, 10 (4), pp. 299-312. Scopus DOI Q4

Используя этот сайт, вы соглашаетесь с тем, что мы используем файлы cookie.