
Публикации
2025
2024
Solodkin, V., Chezhegov, S., Nazikov, R., Beznosikov, A., Gasnikov, A. Accelerated Stochastic Gradient Method with Applications to Consensus Problem in Markov-Varying Networks (2024) Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 14766 LNCS, pp. 69-86. Scopus DOI Q2
Ablaev, S.S., Beznosikov, A.N., Gasnikov, A.V., Dvinskikh, D.M., Lobanov, A.V., Puchinin, S.M., Stonyakin, F.S. On Some Works of Boris Teodorovich Polyak on the Convergence of Gradient Methods and Their Development (2024) Computational Mathematics and Mathematical Physics, 64 (4), pp. 635-675. Scopus DOI Q3
Andrei Semenov, Vladimir Ivanov, Aleksandr Beznosikov, Alexander Gasnikov. Sparse concept bottleneck models: Gumbel tricks in contrastive learning (2024)
Sergey Stanko, Timur Karimullin, Aleksandr Beznosikov, Alexander Gasnikov. Accelerated Methods with Compression for Horizontal and Vertical Federated Learning (2024)
Savelii Chezhegov, Yaroslav Klyukin, Andrei Semenov, Aleksandr Beznosikov, Alexander Gasnikov, Samuel Horváth, Martin Takáč, Eduard Gorbunov. Gradient clipping improves adagrad when the noise is heavy-tailed (2024)
Roman Emelyanov, Andrey Tikhomirov, Aleksandr Beznosikov, Alexander Gasnikov. Extragradient Sliding for Composite Non-monotone Variational Inequalities (2024) International Conference on Optimization and Applications
Andrey Sadchikov, Savelii Chezhegov, Aleksandr Beznosikov, Alexander Gasnikov. Local SGD for near-quadratic problems: Improving convergence under unconstrained noise conditions (2024)
Nazykov, R., Shestakov, A., Solodkin, V., Beznosikov, A., Gidel, G., Gasnikov, A. Stochastic Frank-Wolfe: Unified Analysis and Zoo of Special Cases (2024) Proceedings of Machine Learning Research, 238, pp. 4870-4878. Scopus
2023
Beznosikov, A.N., Gasnikov, A.V., Zainullina, K.E., Maslovskii, A.Y., Pasechnyuk, D.A. A Unified Analysis of Variational Inequality Methods: Variance Reduction, Sampling, Quantization, and Coordinate Descent (2023) Computational Mathematics and Mathematical Physics, 63 (2), pp. 147-174. Scopus DOI Q2
2022
Beznosikov, A., Gasnikov, A. Compression and Data Similarity: Combination of Two Techniques for Communication-Efficient Solving of Distributed Variational Inequalities (2022) Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 13781 LNCS, pp. 151-162. Scopus WOS DOI Q2
2021
Beznosikov, A., Rogozin, A., Kovalev, D., Gasnikov, A. Near-Optimal Decentralized Algorithms for Saddle Point Problems over Time-Varying Networks (2021) Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 13078 LNCS, pp. 246-257. Scopus WOS DOI Q4
Beznosikov, A., Novitskii, V., Gasnikov, A. One-Point Gradient-Free Methods for Smooth and Non-smooth Saddle-Point Problems (2021) Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12755 LNCS, pp. 144-158. Scopus DOI Q4
2020
Nikita Kornilov, Philip Zmushko, Andrei Semenov, Alexander Gasnikov, Alexander Beznosikov. Sign Operator for Coping with Heavy-Tailed Noise: High Probability Convergence Bounds with Extensions to Distributed Optimization and Comparison Oracle (2025)
Dmitry Metelev, Savelii Chezhegov, Alexander Rogozin, Aleksandr Beznosikov, Alexander Sholokhov, Alexander Gasnikov, Dmitry Kovalev. Decentralized finite-sum optimization over time-varying networks (2024)