Gasnikov Alexander Vladimirovich

Doctor of Computer Sciences (Habilitation), Professor

Head of the Laboratory of Mathematical Methods of Optimization, Head of the Department of Mathematical Foundations of Control

Citation statistics: 8307, since 2019 — 5932
h-index: 44, since 2019 — 40
i10-index: 198, since 2019 — 150
Date of Birth: September 2, 1983

Education

2006 — Moscow Institute of Physics and Technology, Department of Control and Applied Mathematics, Moscow, Russia

2007 — Candidate of Computer Sciences (PhD) in Partial Differential Equations, Thesis: “Asymptotic in time behavior of solution of Cauchy problem for conservation law with nonlinear divergent viscosity”, supervisor prof. A.A. Shananin, Moscow Institute of Physics and Technology, Moscow, Russia

2011 — Associate Professor at the Department of Mathematical Foundations of Control

2016 — Doctor of Computer Sciences (Habilitation) in Mathematical Modelling and Numerical methods of Convex Optimization, Doctoral Thesis: “Searching equilibriums in large transport networks”, supervisors prof. A.A. Shananin and prof. Yu.E. Nesterov

Work Experience

since May 2025 — Corresponding Member of the Department of Mathematical Sciences of the Russian Academy of Sciences

since August 2024 — Member of the Council for Science and Education under the President of Russia

since August 2024 — Scientific Director of the Museum Space on the territory of the Sirius Concert Center

since 2024 — leading researcher at the Department of Mathematical Foundations of Artificial Intelligence MIAN RAS

since February 2024 — member of the Scientific Council of the AI Alliance Russia

since November 2023 — Rector of the Innopolis University

since August 2023 — Head of the Laboratory of Multi-scale Neurodynamics for Smart Systems of Skoltech

since 2023 — Chief Researcher of Skoltech

since 2023 — Head of Laboratory No. 10 of the IPPI RAS of Mathematical Foundations of Machine Learning

since 2023 — Member of the Editorial Board of the Siberian Journal of Industrial Mathematics

since 2023 — member of the Editorial Board of the Journal of Computational Mathematics and Mathematical Physics

since 2022 — Member of the Editorial board of the Journal of Optimization Theory and Applications — Q1 (one of the world's leading journals on numerical optimization methods)

since 2022 — Academic head of the PMF direction at the School of FPMI

Since 2022 — Head of the Laboratory of Mathematical Optimization Methods, Moscow Institute of Physics and Technology

since 2022 — Head of Department of Control and Applied Mathematics, Moscow Institute of Physics and Technology

since 2021 — Head of the group in the AI Center of the Institute of System Programming of the Russian Academy of Sciences 

since 2020 — Professor, Moscow Institute of Physics and Technology (State University)

since 2020 — Professor, Faculty of Computer Science, Higher School of Economics

since 2019 — Head of the group at Huawei project. Russia, Moscow

since 2016 — Member of the Editorial Board of the Siberian Journal of Computational Mathematics

Since 2015 — Lead researcher at IITP RAS (Institute for Information Transmission Problems of Russian Academy of Science), Moscow, Russia

2015-2020 — Professor at the HSE (High School Economics), Computer Science Department, Moscow, Russia

2011-2020 — Professor at MIPT (Moscow Institute of Physics and Technology), Department of Control and Applied Mathematics

Research Interests

Mathematical Modeling of Traffic Flows

Optimization (Huge-Scale, Distributed and Parallel, Stochastic, Online)

Learning from optimization point of view

Research Projects and Grants

RFBR 18-29-03071 "Big Data solutions for modeling, analysis and optimization of transport processes" (2018-2021) — performer

RFBR 18-31-20005 "Development of general principles for the construction and analysis of the convergence rate of numerical optimization methods based on the concept of the objective function model" (2018-2020) — Head

RFBR 19-31-51001 Scientific Mentoring "Distributed and parallel algorithms for solving data analysis problems" (2019-2021) — Head

RFBR 19-31-90062 Graduate students "A unified view on randomized numerical methods for solving convex optimization problems" (2019-2021) — Supervisor

RFBR 19-31-90170 Postgraduate students "Search for equilibria in transport networks using direct-dual accelerated methods with auxiliary one—dimensional optimization" (2019-2021) — Head

RNF 17-11-01027 Algorithmic optimization for problems with a large number of variables (2017-2019) — participant

RNF 18-71-10108 Optimal Transport: Numerical Methods and Applications to Data Analysis (2018-2021) — Participant

State Task No. 075-00337-20-03 "Development of effective algorithms for solving large—size optimization problems" (2020-2023) - performer

RFBR No. 19-31-51001 Scientific mentoring "Distributed and parallel algorithms for solving data analysis problems" (2020-2021) — Head

RNF 21-71-30005 Development of numerical optimization methods in applications to control problems, inverse problems and training (2021-2024) — main performer

RPF 23-11-00229 Development of efficient distributed algorithms for solving optimization problems (2023-2025)— head

Awards and Recognitions

Winner of the Yahoo Award for 2019

Winner of the Ilya Segalovich Award (Yandex) for 2020

Winner of the Moscow Government Prize for 2020

Winner of the Talent Funding Award by the Institute of Strategic Research (China) for 2023

Defended dissertations

Alkousa Mohammad, "Numerical Methods for Non-Smooth Convex Optimization Problems with Functional Constraints" (11.06.2020). Candidate of Physical and Mathematical Sciences.

Tyurin Alexander Igorevich, "Development of a method for solving structural optimization problems" (19.11.2020). PhD Candidate in Computer Science. 

Dvurechensky Pavel Evgenievich, "Numerical methods in large-scale optimization: inexact oracle and primal-dual analysis" (28.12.2020). Doctor of Computer Science.

Kamzolov Dmitry Igorevich, "Acceleration of Tensor Methods and Their Optimal Combination" (29.12.2020). Candidate of Physical and Mathematical Sciences.

Gorbunov Eduard Alexandrovich, "Distributed and Stochastic Optimization Methods with Gradient Compression and Local Steps" (23.12.2021). Candidate of Physical and Mathematical Sciences.

Omelchenko Sergey Sergeevich, "Численные методы решения задач выпуклой оптимизации больших размеров, имеющих специальную структуру" (23.12.2021). Candidate of Physical and Mathematical Sciences.

Kotlyarova Ekaterina Vladimirovna, "Поиск равновесия в многостадийных транспортных моделях"(15.12.2022). Candidate of Physical and Mathematical Sciences.

Matyukhin Vladislav Vyacheslavovich, «Ускоренный метаалгоритм и его приложения» (22.12.2022). Candidate of Physical and Mathematical Sciences.

Dorn Yuri Vladimirovich, «Модель Нестерова-де Пальмы и ее применение в задачах макроскопического моделирования транспортных потоков» (22.12.2022). Candidate of Technical Sciences.

Makarenko Dmitry Vladimirovich, «Разработка численных методов решения задач оптимизации при ослабленных условиях гладкости» (22.12.2022). Candidate of Physical and Mathematical Sciences.

Titov Alexander Alexandrovich, «Методы оптимизации для негладких задач в пространствах больших размерностей» (27.06.2023). PhD Candidate in Computer Science.

Beznosikov Alexander Nikolaevich, «Gradient-Free Methods for Saddle-Point Problems and Beyond» (30.08.2023). Candidate of Physical and Mathematical Sciences.

Rogozin Alexander Viktorovich, «Decentralized optimization over time-varying networks» (30.08.2023). Candidate of Physical and Mathematical Sciences.

Ostroukhov Petr Alekseevich, «High-order methods for optimization problems with specific structure» (28.12.2023). Candidate of Physical and Mathematical Sciences.

Novitsky Vasily, "New Bounds for One-point Stochastic Gradient-free Methods" (7.11.2024). Candidate of Physical and Mathematical Sciences.

Yarmoshik Demyan Valerevich, "Decentralized optimization with affine constraints" (23.12.2024). Candidate of Physical and Mathematical Sciences.

Maslovsky Alexander Yuryevich, "Optimization of digital pre-distortion Wiener-Hammerstein like functionals for cancellation of Inter modulation distortions" (26.12.2024). Candidate of Technical Sciences.

Shibaev Innokenty Andreevich, "Безградиентные методы оптимизации для функций с гельдеровым градиентом" (26.12.2024). Candidate of Physical and Mathematical Sciences.

Публикации

2025

Ilya Kuruzov, Mohammad Alkousa, Fedor Stonyakin, Alexander Gasnikov. Gradient-type methods for decentralized optimization problems with Polyak–Łojasiewicz condition over time-varying networks (2025) Optimization Methods and Software, 1–28. DOI Q2

Aleksandr Beznosikov, Valentin Samokhin, Alexander Gasnikov. Distributed saddle point problems: lower bounds, near-optimal and robust algorithms (2025) Optimization Methods and Software. DOI Q2

Ilya Kuruzov, Alexander Rogozin, Demyan Yarmoshik, Alexander Gasnikov. The mirror-prox sliding method for non-smooth decentralized saddle-point problems (2025) Optimization Methods and Software. DOI Q2

Artem Vasin, Valery Krivchenko, Dmitry Kovalev, Fedyor Stonyakin, Nazari Tupitsa, Pavel Dvurechensky, Mohammad Alkousa, Nikita Kornilov, Alexander Gasnikov. On Solving Minimization and Min-Max Problems by First-Order Methods with Relative Error in Gradients (2025) 

Dmitrii Pasechniuk, Pavel Dvurechensky, César A Uribe, Alexander Gasnikov. Decentralised convex optimisation with probability-proportional-to-size quantization (2025)

Aleksandr Lobanov, Alexander Gasnikov. Power of Generalized Smoothness in Stochastic Convex Optimization: First- and Zero-Order Algorithms (2025)

Egor Gladin, Alexander Gasnikov, Pavel Dvurechensky. Accuracy certificates for convex minimization with inexact oracle (2025) Journal of Optimization Theory and Applications. DOI

2024

Lobanov, A., Bashirov, N., Gasnikov, A. The “Black-Box” Optimization Problem: Zero-Order Accelerated Stochastic Method via Kernel Approximation (2024) Journal of Optimization Theory and Applications, 203 (3), pp. 2451-2486. Scopus DOI Q1

Gorbunov, E., Danilova, M., Shibaev, I., Dvurechensky, P., Gasnikov, A. High-Probability Complexity Bounds for Non-smooth Stochastic Convex Optimization with Heavy-Tailed Noise (2024) Journal of Optimization Theory and Applications, 203 (3), pp. 2679-2738. Scopus DOI Q1

Klimza, A., Gasnikov, A., Stonyakin, F., Alkousa, M. Universal methods for variational inequalities: Deterministic and stochastic cases (2024) Chaos, Solitons and Fractals, 187, статья № 115418, . Scopus DOI Q1

Pichugin, A., Pechin, M., Beznosikov, A., Novitskii, V., Gasnikov, A. Method with batching for stochastic finite-sum variational inequalities in non-Euclidean setting (2024) Chaos, Solitons and Fractals, 187, статья № 115396, . Scopus DOI Q1

Alkousa, M., Stonyakin, F., Gasnikov, A., Abdo, A., Alcheikh, M. Higher degree inexact model for optimization problems (2024) Chaos, Solitons and Fractals, 186, статья № 115292, . Scopus DOI Q1

Statkevich, E., Bondar, S., Dvinskikh, D., Gasnikov, A., Lobanov, A. Gradient-free algorithm for saddle point problems under overparametrization (2024) Chaos, Solitons and Fractals, 185, статья № 115048, . Scopus DOI Q1

Dvurechensky, P., Ostroukhov, P., Gasnikov, A., Uribe, C.A., Ivanova, A. Near-optimal tensor methods for minimizing the gradient norm of convex functions and accelerated primal–dual tensor methods (2024) Optimization Methods and Software, 39 (5), pp. 1068-1103. Scopus DOI Q1

Rogozin, A., Beznosikov, A., Dvinskikh, D., Kovalev, D., Dvurechensky, P., Gasnikov, A. Decentralized saddle point problems via non-Euclidean mirror prox (2024) Optimization Methods and Software. Scopus DOI Q1

Agafonov, A., Kamzolov, D., Dvurechensky, P., Gasnikov, A., Takáč, M. Inexact tensor methods and their application to stochastic convex optimization (2024) Optimization Methods and Software, 39 (1), pp. 42-83. Scopus DOI Q1

Metelev, D., Rogozin, A., Gasnikov, A., Kovalev, D. Decentralized saddle-point problems with different constants of strong convexity and strong concavity (2024) Computational Management Science, 21 (1), статья № 5. Scopus DOI Q2

Solodkin, V., Chezhegov, S., Nazikov, R., Beznosikov, A., Gasnikov, A. Accelerated Stochastic Gradient Method with Applications to Consensus Problem in Markov-Varying Networks (2024) Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 14766 LNCS, pp. 69-86. Scopus DOI Q2

Nguyen, N.T., Rogozin, A., Metelev, D., Gasnikov, A. Min-Max Optimization over Slowly Time-Varying Graphs (2024) Doklady Mathematics, 108 (Suppl 2), pp. S300-S309. Scopus DOI Q2

Meruza Kubentayeva, Demyan Yarmoshik, Mikhail Persiianov, Alexey Kroshnin, Ekaterina Kotliarova, Nazarii Tupitsa, Dmitry Pasechnyuk, Alexander Gasnikov, Vladimir Shvetsov, Leonid Baryshev, Alexey Shurupov. Primal-Dual Gradient Methods for Searching Network Equilibria in Combined Models with Nested Choice Structure and Capacity Constraints (2024) Scopus DOI Q3

Krivchenko, V.O., Gasnikov, A.V., Kovalev, D.A. Convex-Concave Interpolation and Application of PEP to the Bilinear-Coupled Saddle Point Problem (2024) Russian Journal of Nonlinear Dynamics, 20 (5), pp. 875-893. Scopus DOI Q3

Akindinov, G.D., Gasnikov, A.V., Krivorotko, O.I., Matyukhin, V.V., Pletnev, N.V. Gradient-type Approaches to Inverse and Ill-Posed Problems of Mathematical Physics (2024) Computational Mathematics and Mathematical Physics, 64 (9), pp. 1974-1990. Scopus DOI Q3

Dorn, Y., Kornilov, N., Kutuzov, N., Nazin, A., Gorbunov, E., Gasnikov, A. Implicitly normalized forecaster with clipping for linear and non-linear heavy-tailed multi-armed bandits (2024) Computational Management Science, 21 (1), статья № 19. Scopus DOI Q3

Pirau, V., Beznosikov, A., Takáč, M., Matyukhin, V., Gasnikov, A. Preconditioning meets biased compression for efficient distributed optimization (2024) Computational Management Science, 21 (1), статья № 14. Scopus DOI Q3

Yufereva, O., Persiianov, M., Dvurechensky, P., Gasnikov, A., Kovalev, D. Decentralized convex optimization on time-varying networks with application to Wasserstein barycenters (2024) Computational Management Science, 21 (1), статья № 12. Scopus DOI Q3

Metelev, D., Beznosikov, A., Rogozin, A., Gasnikov, A., Proskurnikov, A. Decentralized optimization over slowly time-varying graphs: algorithms and lower bounds (2024) Computational Management Science, 21 (1), статья № 8. Scopus DOI Q3

Ablaev, S.S., Beznosikov, A.N., Gasnikov, A.V., Dvinskikh, D.M., Lobanov, A.V., Puchinin, S.M., Stonyakin, F.S. On Some Works of Boris Teodorovich Polyak on the Convergence of Gradient Methods and Their Development (2024) Computational Mathematics and Mathematical Physics, 64 (4), pp. 635-675. Scopus DOI Q3

Gasnikov, A.V., Lobanov, A.V., Stonyakin, F.S. Highly Smooth Zeroth-Order Methods for Solving Optimization Problems under the PL Condition (2024) Computational Mathematics and Mathematical Physics, 64 (4), pp. 739-770. Scopus DOI Q3

Nguyen, N.T., Rogozin, A.V., Gasnikov, A.V. Average-Case Optimization Analysis for Distributed Consensus Algorithms on Regular Graphs (2024) Russian Journal of Nonlinear Dynamics, 20 (5), pp. 907-931. Scopus DOI Q3

Smirnov, V.N., Kazistova, K.M., Sudakov, I.A., Leplat, V., Gasnikov, A.V., Lobanov, A.V. Asymptotic Analysis of the Ruppert – Polyak Averaging for Stochastic Order Oracle (2024) Russian Journal of Nonlinear Dynamics, 20 (5), pp. 961-978. Scopus DOI Q3

Gasnikov, A.V., Alkousa, M.S., Lobanov, A.V., Dorn, Y.V., Stonyakin, F.S., Kuruzov, I.A., Singh, S.R. On Quasi-Convex Smooth Optimization Problems by a Comparison Oracle (2024) Russian Journal of Nonlinear Dynamics, 20 (5), pp. 813-825. Scopus DOI Q3

Savchuk, O., Puchinin, S., Stonyakin, F., Alkousa, M., Gasnikov, A. Numerical Methods for Variational Inequalities and Saddle Point Problems with Relative Inexact Information (2024) Communications in Computer and Information Science, 2239 CCIS, pp. 19-45. Scopus DOI Q4

Yudin, N.E., Gasnikov, A.V. Regularization and acceleration of Gauss - Newton method [Регуляризация и ускорение метода Гаусса - Ньютона] (2024) Computer Research and Modeling, 16 (7), pp. 1829-1840. Scopus DOI Q4

Artem Agafonov, Dmitry Kamzolov, Alexander Gasnikov, Ali Kavis, Kimon Antonakopoulos, Volkan Cevher, Martin Takáč. Advancing the Lower Bounds: an Accelerated, Stochastic, Second-order Method with Optimal Adaptation to Inexactness (2024) Scopus DOI

Eduard Gorbunov, Abdurakhmon Sadiev, Marina Danilova, Samuel Horváth, Gauthier Gidel, Pavel Dvurechensky, Alexander Gasnikov, Peter Richtárik. High-Probability Convergence for Composite and Distributed Stochastic Minimization and Variational Inequalities with Heavy-Tailed Noise (2024) Scopus DOI

Nikita Kornilov, Ohad Shamir, Aleksandr Lobanov, Darina Dvinskikh, Alexander Gasnikov, Innokentiy Andreevich Shibaev, Eduard Gorbunov, Samuel Horváth. Accelerated Zeroth-order Method for Non-Smooth Stochastic Convex Optimization Problem with Infinite Variance (2024) Scopus DOI

Puchkin, N., Gorbunov, E., Kutuzov, N., Gasnikov, A. Breaking the Heavy-Tailed Noise Barrier in Stochastic Optimization Problems (2024) Proceedings of Machine Learning Research, 238, pp. 856-864. Scopus

Nazykov, R., Shestakov, A., Solodkin, V., Beznosikov, A., Gidel, G., Gasnikov, A. Stochastic Frank-Wolfe: Unified Analysis and Zoo of Special Cases (2024) Proceedings of Machine Learning Research, 238, pp. 4870-4878. Scopus

Aleksandr Lobanov, Alexander Gasnikov, Eduard Gorbunov, Martin Takáč. Linear Convergence Rate in Convex Setup is Possible! Gradient Descent Method Variants under (L_0,L_1)-Smoothness (2025) 

Ilya Kuruzov, Gesualdo Scutari, Alexander Gasnikov. Achieving linear convergence with parameter-free algorithms in decentralized optimization (2024) Advances in Neural Information Processing Systems

Nikita Kornilov, Petr Mokrov, Alexander Gasnikov, Aleksandr Korotin. Optimal flow matching: Learning straight trajectories in just one step (2024) Advances in Neural Information Processing Systems

A. Gasnikov, V. Temlyakov. Some lower bounds for optimal sampling recovery of functions with mixed smoothness (2024)

V.N. Smirnov, K.M. Kazistova, I.A. Sudakov, V. Leplat, A.V. Gasnikov, A.V. Lobanov. Ruppert-Polyak averaging for Stochastic Order Oracle (2024)

O. S. Savchuk, M. S. Alkousa, A. S. Shushko, A. A. Vyguzov, F. S. Stonyakin, D. A. Pasechnyuk, A. V. Gasnikov. Accelerated Bregman gradient methods for relatively smooth and relatively Lipschitz continuous minimization problems (2024)

Georgii Bychkov, Darina Dvinskikh, Anastasia Antsiferova, Alexander Gasnikov, Aleksandr Lobanov. Accelerated zero-order SGD under high-order smoothness and overparameterized regime (2024)

Dmitry Kamzolov, Dmitry Pasechnyuk, Artem Agafonov, Alexander Gasnikov, Martin Takáč. Optami: Global superlinear convergence of high-order methods (2024)

Andrey Sadchikov, Savelii Chezhegov, Aleksandr Beznosikov, Alexander Gasnikov. Local SGD for near-quadratic problems: Improving convergence under unconstrained noise conditions (2024)

Boris Chervonenkis, Andrei Krasnov, Alexander Gasnikov, Aleksandr Lobanov. Nesterov’s Method of Dichotomy via Order Oracle: The Problem of Optimizing a Two-Variable Function on a Square (2024) International Conference on Optimization and Applications

Victoria Guseva, Ilya Sklonin, Irina Podlipnova, Demyan Yarmoshik, Alexander Gasnikov. An Equilibrium Dynamic Traffic Assignment Model with Linear Programming Formulation (2024) International Conference on Optimization and Applications

Roman Emelyanov, Andrey Tikhomirov, Aleksandr Beznosikov, Alexander Gasnikov. Extragradient Sliding for Composite Non-monotone Variational Inequalities (2024) International Conference on Optimization and Applications

Mark Obozov, Makar Baderko, Stepan Kulibaba, Nikolay Kutuzov, Alexander Gasnikov. Exploring Applications of State Space Models and Advanced Training Techniques in Sequential Recommendations: A Comparative Study on Efficiency and Performance (2024)

A. Gasnikov, V. Temlyakov. On greedy approximation in complex Banach spaces (2024)

Demyan Yarmoshik, Alexander Rogozin, Nikita Kiselev, Daniil Dorin, Alexander Gasnikov, Dmitry Kovalev. Decentralized Optimization with Coupled Constraints (2024)

Savelii Chezhegov, Yaroslav Klyukin, Andrei Semenov, Aleksandr Beznosikov, Alexander Gasnikov, Samuel Horváth, Martin Takáč, Eduard Gorbunov. Gradient clipping improves adagrad when the noise is heavy-tailed (2024)

Savelii Chezhegov, Sergey Skorik, Nikolas Khachaturov, Danil Shalagin, Aram Avetisyan, Martin Takáč, Yaroslav Kholodov, Aleksandr Beznosikov. Local methods with adaptivity via scaling (2024)

Dmitry Kovalev, Ekaterina Borodich, Alexander Gasnikov, Dmitrii Feoktistov. Lower Bounds and Optimal Algorithms for Non-Smooth Convex Decentralized Optimization over Time-Varying Networks (2024)

Sergey Stanko, Timur Karimullin, Aleksandr Beznosikov, Alexander Gasnikov. Accelerated Methods with Compression for Horizontal and Vertical Federated Learning (2024)

Andrei Semenov, Vladimir Ivanov, Aleksandr Beznosikov, Alexander Gasnikov. Sparse concept bottleneck models: Gumbel tricks in contrastive learning (2024)

Aleksandr Lobanov, Alexander Gasnikov, Andrei Krasnov. Acceleration exists! optimization problems when oracle can only compare objective function values (2024)

Petr Ostroukhov, Aigerim Zhumabayeva, Chulu Xiang, Alexander Gasnikov, Martin Takáč, Dmitry Kamzolov. AdaBatchGrad: Combining Adaptive Batch Size and Adaptive Step Size (2024)

Nikita Kornilov, Yuriy Dorn, Aleksandr Lobanov, Nikolay Kutuzov, Innokentiy Shibaev, Eduard Gorbunov, Alexander Gasnikov, Alexander Nazin. Median Clipping for Zeroth-order Non-Smooth Convex Optimization and Multi-Armed Bandit Problem with Heavy-tailed Symmetric Noise (2024)

Aleksandr Lobanov, Alexander Gasnikov, Andrei Krasnov. The order oracle: a new concept in the black box optimization problems (2024)

Nikita Kornilov, Yuriy Dorn, Aleksandr Lobanov, Nikolay Kutuzov, Innokentiy Shibaev, Eduard Gorbunov, Alexander Gasnikov, Alexander Nazin. Zeroth-order median clipping for non-smooth convex optimization problems with heavy-tailed symmetric noise (2024)

2023

Gladin, E., Lavrik-Karmazin, M., Zainullina, K., Rudenko, V., Gasnikov, A., Takáč, M. Algorithm for Constrained Markov Decision Process with Linear Convergence (2023) Proceedings of Machine Learning Research, 206, pp. 11506-11533. Scopus DOI A*

Sadiev, A., Danilova, M., Gorbunov, E., Horváth, S., Gidel, G., Dvurechensky, P., Gasnikov, A., Richtárik, P. High-Probability Bounds for Stochastic Optimization and Variational Inequalities: the Case of Unbounded Variance (2023) Proceedings of Machine Learning Research, 202, pp. 29563-29648. Scopus DOI A*

Metelev, D., Rogozin, A., Kovalev, D., Gasnikov, A. Is Consensus Acceleration Possible in Decentralized Optimization over Slowly Time-Varying Networks? (2023) Proceedings of Machine Learning Research, 202, pp. 24532-24554. Scopus DOI A*

Vasin, A., Gasnikov, A., Dvurechensky, P., Spokoiny, V. Accelerated gradient methods with absolute and relative noise in the gradient (2023) Optimization Methods and Software. Scopus DOI Q1

Tkachenko S., Andreev A., Beznosikov A., Gasnikov A. Real Acceleration of Communication Process in Distributed Algorithms with Compression (2023), 14395 LNCS, pp. 99 - 109 Scopus DOI Q1

Medyakov, D., Molodtsov, G., Beznosikov, A., Gasnikov, A. Optimal Data Splitting in Distributed Optimization for Machine Learning (2023) Doklady Mathematics, 108 (Suppl 2), pp. S465-S475. Scopus DOI Q1

Rudakov, M.I., Beznosikov, A.N., Kholodov, Y.A., Gasnikov, A.V. Activations and Gradients Compression for Model-Parallel Training (2024) Doklady Mathematics, 108 (Suppl 2), pp. S272-S281. Scopus DOI Q1

Gasnikova, E.V., Gasnikov, A.V., Yarmoshik, D.V., Kubentaeva, M.B., Persianov, M.I., Podlipnova, I.V., Kotlyarova, E.V., Sklonin, I.A., Podobnaya, E.D., Matyukhin, V.V. Multistage Transportation Model and Sufficient Conditions for Its Potentiality (2023) Doklady Mathematics, 108 (Suppl 1), pp. S139-S144. Scopus DOI Q1

Beznosikov, A.N., Gasnikov, A.V., Zainullina, K.E., Maslovskii, A.Y., Pasechnyuk, D.A. A Unified Analysis of Variational Inequality Methods: Variance Reduction, Sampling, Quantization, and Coordinate Descent (2023) Computational Mathematics and Mathematical Physics, 63 (2), pp. 147-174. Scopus DOI Q2

Gasnikova, E., Gasnikov, A., Kholodov, Y., Zukhba, A. An Evolutionary View on Equilibrium Models of Transport Flows (2023) Mathematics, 11 (4), статья № 858. Scopus DOI Q2

Turdakov, D.Y., Avetisyan, A.I., Arkhipenko, K.V., Antsiferova, A.V., Vatolin, D.S., Volkov, S.S., Gasnikov, A.V., Devyatkin, D.A., Drobyshevsky, M.D., Kovalenko, A.P., Krivonosov, M.I., Lukashevich, N.V., Malykh, V.A., Nikolenko, S.I., Oseledets, I.V., Perminov, A.I., Sochenkov, I.V., Tikhomirov, M.M., Fedotov, A.N., Khachay, M.Y. Trusted Artificial Intelligence: Challenges and Promising Solutions (2022) Doklady Mathematics, 106, pp. S9-S13. Scopus DOI Q2

Guminov, S., Gasnikov, A., Kuruzov, I. Accelerated methods for weakly-quasi-convex optimization problems (2023) Computational Management Science, 20 (1), статья № 36, . Scopus DOI Q2

Kornilov, N., Gasnikov, A., Dvurechensky, P., Dvinskikh, D. Gradient-free methods for non-smooth convex stochastic optimization with heavy-tailed noise on convex compact (2023) Computational Management Science, 20 (1), статья № 37, . Scopus DOI Q2

Lobanov, A., Veprikov, A., Konin, G., Beznosikov, A., Gasnikov, A., Kovalev, D. Non-smooth setting of stochastic decentralized convex optimization problem over time-varying Graphs (2023) Computational Management Science, 20 (1), статья № 48. Scopus DOI Q2

Alashqar, B.A., Gasnikov, A.V., Dvinskikh, D.M., Lobanov, A.V. Gradient-free Federated Learning Methods with l 1 and l 2-randomization for Non-smooth Convex Stochastic Optimization Problems (2023) Computational Mathematics and Mathematical Physics, 63 (9), pp. 1600-1653. Scopus DOI Q2

Alkousa, M.S., Gasnikov, A.V., Gladin, E.L., Kuruzov, I.A., Pasechnyuk, D.A., Stonyakin, F.S. Solving strongly convex-concave composite saddle-point problems with low dimension of one group of variables (2023) Sbornik Mathematics, 214 (3), pp. 285-333. Scopus DOI Q2

Pichugin, A., Pechin, M., Beznosikov, A., Savchenko, A., Gasnikov, A. Optimal Analysis of Method with Batching for Monotone Stochastic Finite-Sum Variational Inequalities (2023) Doklady Mathematics, 108 (Suppl 2), pp. S348-S359. Scopus DOI Q2

Pasechnyuk, D.A., Persiianov, M., Dvurechensky, P., Gasnikov, A. Algorithms for Euclidean-Regularised Optimal Transport (2023) Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 14395 LNCS, pp. 84-98. Scopus DOI Q2

Lobanov, A., Gasnikov, A. Accelerated Zero-Order SGD Method for Solving the Black Box Optimization Problem Under “Overparametrization” Condition (2023) Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 14395 LNCS, pp. 72-83. Scopus DOI Q2

Chezhegov, S., Rogozin, A., Gasnikov, A. On Decentralized Nonsmooth Optimization (2023) Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 13930 LNCS, pp. 25-38. Scopus DOI Q3

Beznosikov, A., Gasnikov, A. SARAH-Based Variance-Reduced Algorithm for Stochastic Finite-Sum Cocoercive Variational Inequalities (2023) Springer Optimization and Its Applications, 202, pp. 47-57. Scopus DOI Q3

Demyan Yarmoshik, Alexander Rogozin, Alexander Gasnikov. Decentralized optimization with affine constraints over time-varying networks (2023) Scopus DOI Q3

Nikita Iltyakov, Mark Obozov, Igor Dyslevski, Demyan Yarmoshik, Meruza Kubentayeva, Alexander Gasnikov. On Accelerated Coordinate Descent Methods for Searching Equilibria in Two-Stage Transportation Equilibrium Traffic Flow Distribution Model (2023) Scopus DOI Q3

Ablaev, S.S., Stonyakin, F.S., Alkousa, M.S., Gasnikov, A.V. Adaptive Subgradient Methods for Mathematical Programming Problems with Quasiconvex Functions (2023) Proceedings of the Steklov Institute of Mathematics, 323, pp. S1-S18. Scopus DOI Q3

Il’tyakov, N.A., Obozov, M.A., Dyshlevski, I.M., Yarmoshik, D.V., Kubentaeva, M.B., Gasnikov, A.V., Gasnikova, E.V. On Accelerated Coordinate Descent Methods for Searching Equilibria in Two-Stage Transportation Equilibrium Traffic Flow Distribution Model (2023) Programming and Computer Software, 49 (6), pp. 513-524. Scopus DOI Q3

Vedernikov, R.A., Rogozin, A.V., Gasnikov, A.V. Decentralized Conditional Gradient Method on Time-Varying Graphs (2023) Programming and Computer Software, 49 (6), pp. 505-512. Scopus DOI Q3

Tominin, Y.D., Tominin, V.D., Borodich, E.D., Kovalev, D.A., Dvurechensky, P.E., Gasnikov, A.V., Chukanov, S.V. On Accelerated Methods for Saddle-Point Problems with Composite Structure [Об ускоренных методах для седловых задач с композитной структурой] (2023) Computer Research and Modeling, 15 (2), pp. 433-467. Scopus DOI Q4

Lobanov, A., Anikin, A., Gasnikov, A., Gornov, A., Chukanov, S. Zero-Order Stochastic Conditional Gradient Sliding Method for Non-smooth Convex Optimization (2023) Communications in Computer and Information Science, 1881 CCIS, pp. 92-106. Scopus DOI Q4

Savchuk, O., Stonyakin, F., Alkousa, M., Zabirova, R., Titov, A., Gasnikov, A. Online Optimization Problems with Functional Constraints Under Relative Lipschitz Continuity and Relative Strong Convexity Conditions (2023) Communications in Computer and Information Science, 1881 CCIS, pp. 29-43. Scopus DOI Q4

Dvurechensky, P., Gasnikov, A., Tyurin, A., Zholobov, V. Unifying Framework for Accelerated Randomized Methods in Convex Optimization (2023) Springer Proceedings in Mathematics and Statistics, 425, pp. 511-561. Scopus DOI

Aleksandr Beznosikov, Martin Takáč, Alexander Gasnikov. Similarity, Compression and Local Steps: Three Pillars of Efficient Communications for Distributed Variational Inequalities (2023) Scopus DOI

Aleksandr Beznosikov, Sergey Samsonov, Marina Sheshukova, Alexander Gasnikov, Alexey Naumov, Eric Moulines. First Order Methods with Markovian Noise: from Acceleration to Variational Inequalities (2023) Scopus DOI

Aleksandr Beznosikov, Peter Richtárik, Michael Diskin, Max Ryabinin, Alexander V. Gasnikov. Distributed Methods with Compressed Communication for Solving Variational Inequalities, with Theoretical Guarantees (2023) Scopus DOI

Stonyakin, F., Alkousa, M., Titov, A., Savchuk, O., Gasnikov, A. Adaptive algorithms for relatively lipschitz continuous convex optimization problems (2023) Pure and Applied Functional Analysis, 8 (5), pp. 1505-1526. Scopus

Ablaev, S.S., Stonyakin, F.S., Alkousa, M.S., Gasnikov, A.V. Adaptive subgradient methods for mathematical programming problems with quasi-convex functions (2023) Trudy Instituta Matematiki i Mekhaniki UrO RAN, 29 (3), pp. 7-25. Scopus DOI

2022

Kovalev, D., Beznosikov, A., Borodich, E., Gasnikov, A., Scutari, G. Optimal Gradient Sliding and its Application to Distributed Optimization Under Similarity (2022) Advances in Neural Information Processing Systems, 35. Scopus WOS DOI  A*

Kovalev, D., Gasnikov, A., Richtárik, P. Accelerated Primal-Dual Gradient Method for Smooth and Convex-Concave Saddle-Point Problems with Bilinear Coupling (2022) Advances in Neural Information Processing Systems, 35. Scopus WOS DOI A*

Используя этот сайт, вы соглашаетесь с тем, что мы используем файлы cookie.